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Introduction

L’analyse mathématique, n’est elle donc qu’un vain jeu d’esprit? Elle ne peut donner

au physicien qu’un langage commode; n’est-ce pas là un médiocre service, dont on

aurait pu se passer à la rigueur; et même n’est il pas à craindre que ce langage

artificiel ne soit un voile interposé entre la réalité et l’œil du physicien? Loin de là,

sans ce langage, la pluspart des analogies intimes des choses nous seraient demeurées

à jamais inconnues; et nous aurions toujours ignoré l’harmonie interne du monde,

qui est, nous le verrons, la seule véritable réalité objective. 1

Henri Poincaré, La valeur de la science.

Starting with the Newtonian revolution, the eighteenth and nineteenth

century have seen with the development of analytical mechanics an un-

precedented tool for the analysis and prediction of natural phenomena. The

power and precision of Hamiltonian perturbation theory had allowed to ex-

plain quantitatively even the details of the motion observed in the solar

system. In practical terms, analytical mechanics had made the construction

of highly effective machines possible. Unsurprisingly, these successes led to

the widespread believe that, ultimately, mechanics could explain the func-

tioning of the entire universe. On the basis of this confidence, new areas

of physics, outside the realm of the immediate applicability of Newtonian

mechanics, became the target of the new science of theoretical (analytical)

physics. One of the most important of these new fields was the theory of

heat, or thermodynamics. One of the main principles of Newtonian mechan-

ics was that of the conservation of energy. Now, such a principle could not

1 Approximately: So is mathematical analysis then not just a vain game of the mind? To the
physicist it can only give a convenient language; but isn’t that a mediocre service, which after
all we could have done without; and, is it not even to be feared that this artificial language be
a veil, interposed between reality and the physicists eye? Far from that, without this language
most of the intimate analogies of things would forever have remained unknown to us; and we
would never had knowledge of the internal harmony of the world, which is, as we shall see, the
only true objective reality.

2



1.1 Thermodynamics 3

hold entirely, due to the ubiquitous loss of energy through friction. Thus,

all machines on earth require some source of energy. One convenient source

of energy is heat, obtainable, e.g., from the burning of wood, coal, or petrol.

A central objective of the theory of thermodynamics was to understand how

the two types of energy, mechanical and thermal, could be converted into

each other. This was originally a completely pragmatic theory, that in-

troduced new concepts related to the phenomenon of heat, temperature and

entropy, and coupled these to mechanical concepts of energy and force. Only

towards the end of the nineteenth century, when the success of mechanics

reached a peak, Boltzmann, following earlier work by Bernoulli, Herapath,

Joule, Krönig , Claudius, and Maxwell, was to give a mechanical interpre-

tation of the thermodynamic effects on the basis of the atomistic theory.

This kinetic theory of gases was turned into what we now know as statisti-

cal mechanics through the work of Gibbs in the early twentieth century. It

should be mentioned that this theory, that is now perfectly accepted, met

considerable hostility in its early days. The first part of this book will give

a short introduction into the theory of statistical mechanics.

It is not a coincidence that at the same time when statistical mechanics

was created, another new discipline of physics emerged, that of quantum

mechanics. Quantum mechanics was concerned with the inadequacies of

classical mechanics on the level of microscopic physics, in particular the

theory of atoms, and thus concerned the opposite side of what statistical

mechanics is about. Interestingly, quantum mechanical effects could explain

some deviations of the predictions of statistical mechanics from experimental

observation (e.g. the problem of black body radiation that was resolved by

Planck’s quantum hypothesis). The basic principles of statistical mechanics

can be well reconciled with quantum mechanics and give rise the the theory

of quantum statistical mechanics. However, in many cases, a full quantum

mechanical treatment of statistical mechanics turns out to be unnecessary,

and much of classical mechanics applies with just some minor changes. In

any case, we will here consider only the classical theory. Before approaching

our main subject, let us have a very brief look at thermodynamics.

1.1 Thermodynamics

A mechanical system is characterized by essentially geometric quantities,

the positions and velocities of its components (which are points of mass). If

solid objects are described, the assumption of rigidity allows to reduce their

description to essentially the same kind of coordinates. Such a description

does not, however, do complete justice to all the objects we can observe.
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Even solids are not really rigid, and may change their shape. Moreover,

there are liquids, and gases, for which such a description breaks down com-

pletely. Finally, there are properties of real objects beyond their positions

or velocities that may interfere with their mechanical properties, in particu-

lar their temperature. In fact, in a dissipative system one may observe that

the temperature of a decelerating body often increases. Thermodynamics

introduces a description of such new internal variables of the system and

devises a theory allowing to control the associated flow of energy.

The standard classical setting of thermodynamics is geared to the be-

haviour of a gas. A gas is thought to be enclosed in a container of a given

(but possibly variable) volume, V > 0. This container provides the means

to couple the system to an external mechanical system. Namely, if one can

make the gas change the volume of the container, the resulting motion can

be used to drive a machine. Conversely, we may change the volume of the

container and thus change the properties of the gas inside. Thus, we need

a parameter to describe the state of the gas that reacts to the change of

volume. This parameter is called the pressure, p. The definition of the pres-

sure is given through the amount of mechanical energy needed to change the

volume1:

dEmech = −pdV (1.1)

Pressure is the first intensive variable of thermodynamics that we meet.

Clearly, the relation (1.1) is not universal, but depends on further parame-

ters. An obvious one is the total amount of gas in the container, N . Origi-

nally, N was measured in moles, which could be defined in terms of chemical

properties of the gases. Nowadays, we know that a mole corresponds to a

certain number of molecules (∼ 6× 1023). and we think of N as the number

of molecules in the gas. It is natural to assume that, if V (N) = Nv, then

p = p(v) should not depend on N . Hence the term intensive. By contrast,

V is called extensive. It follows that E is also an extensive quantity. Just

as V , N can be a variable, and its change may involve a change of energy.

This may not seem natural, but we should think of chemical reactions (and

the possibility to have several types of molecules). By such reactions, the

number of molecules will change and such a change will create or diminish

a reservoir of external chemical energy (e.g., energy stored in the form of

carbon). Again, we need a parameter to relate this energy change to the

change in mass. We call this the chemical potential, µ. Then
1 The minus sign may appear strange (as many of the signs in thermodynamics). The point,

however, is that if the volume increases, work is done by the system (transfered somewhere),
so the energy of the system decreases.
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dEchem = µdN (1.2)

Now comes heat. Contrary to the two previous variables, volume and mass,

heat is a less tangible concept. In fact, in this case the intensive variable, the

temperature, T , is the more intuitive one. This is something we can at least

feel, and to some extent also measure, e.g., using a mercury thermometer.

However, we could abstract from this sensual notion and simply observe that,

in order to have energy conservation, we must take into account a further

internal variable property of the gas. This quantity is calledentropy, S,

and the temperature is the coefficient that relates its change to the change

of energy. An important assumption is that this quantity is always non-

negative. Traditionally, this thermal energy is called heat and denoted by

Q, so that we have

dQ = TdS (1.3)

The principle of conservation of energy then states that any change of the

parameters of the system respect the

First law of Thermodynamics:

dEmech + dEchem + dQ = dE (1.4)

respectively

dE = −pdV + µdN + TdS (1.5)

Moreover, for closed systems, i.e. for any processes that do not involve

exchange of energy with some additional external system, dE = 0.

The main task of thermodynamics is to understand how the total energy

of the system can be transformed from one type to the other in order to

transform, e.g., heat into mechanical energy.

We will postulate that the state of thermodynamic system (in equilib-

rium!) is described by giving the value of the the three extensive variables

V,N, S. Therefore we can assume that the thermodynamic state space is a

three-dimensional manifold. In particular, the total energy,

E = Emech + Echem +Q (1.6)

will be given as a function, E(V,N, S). Such a function defines the partic-

ular thermodynamic system. It then follows that the intensive variables (in

equilibrium!) can be expressed as functions of the extensive variables via

−p(V,N, S) = ∂E(V,N,S)
∂V

µ(V,N, S) = ∂E(V,N,S)
∂N

T (V,N, S) = ∂E(V,N,S)
∂S (1.7)
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These equations are called equations of state.

Remark 1.1.1 The statements above can be interpreted as follows: Sup-

pose we fix the intensive variables p, T, µ by some mechanism to certain val-

ues, and set the extensive variables V , S, N to some initial values V0, S0, N0.

Then the time evolution of the system will drive these parameters to equi-

librium, i.e. to the values for which equations (1.7) hold. Such processes

are called irreversible. In contrast, reversible processes vary intensive and

extensive parameters in such a way that the equations of state (1.7) hold

both in the initial and in the final state of the process, i.e. the process passes

along equilibrium states of the system. Note that this statement contains

the formulation of the second law of thermodynamics.

One of the main pleasures of thermodynamics is to re-express the equa-

tions of state in terms of different sets of variables, e.g. to express V,N, S as

a function of p,N, T , etc. To ensure that this is possible, one always assumes

that E is a convex function. The function E(V, S,N) is usually called the

internal energy. Then, the desired change of variables can be achieved with

the help of Legendre transformations.

In the example mentioned, we would like to express the energy as a func-

tion of p, T,N and to introduce a new function G with the property that
∂G
∂p = V . That is, we must have that

dG(p, T,N) = +V dp− SdT + µdN

= +d(V p)− d(ST )− pdV + TdS + µdN (1.8)

= d(V p− ST + E)

Thus, we get

G(p, T,N) = pV (p, T,N)− TS(p, T,N) (1.9)

+ E(V (p, T,N), N, S(p, T,N))

where the functions V and S are obtained from inverting (1.7). However,

this inversion need often not be done, since an expression of the energy in

the new variables is readily available. The important observation is that the

fundamental function, whose derivatives provide the equations of state, is

not always the energy, but its various Legendre transforms. All these func-

tions carry interesting names, such as internal energy, free energy, enthalpy,

free enthalpy, etc., which are difficult to remember. The importance of these

different forms of these thermodynamic potentials lies in the fact that one is

interested in processes where some parameters of the system are changed,

while others are fixed. Computing the resulting changes is most easily done
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with the help of the corresponding natural potential, which typically corre-

sponds to the conserved energy when its variables are kept fixed while the

others are varied.

The function G is called the Gibbs free energy. Other potentials whose

name it is useful to remember are

(i) the Helmholtz free energy,

F (T, V,N) = E − TS (1.10)

(ii) the enthalpy

H(p, S,N) = E + pV (1.11)

,

Let us note that thermodynamics, contrary to what its name suggests, is not

a theory of dynamics, but rather one of statics, or equilibrium. For example,

the values that the intensive parameters take on when the extensive ones

are fixed, are equilibrium values. When performing thermodynamic calcula-

tions, one always assumes that the system takes on these equilibrium values,

which is perhaps a reasonable approximation if the motion is performed very

slowly. In reality, things are much more difficult.

At some moment we have said that the assumption of convexity allows us

to invert the equations of state and to express, e.g., V as a function of p, T,N .

But this is not true. It is only true if E is a strictly convex function. If in some

region E depends linearly on V , then p = ∂E
∂V = const. on that set, and we

cannot compute V as a function of p; all we know is that, for this value of p, V

must lie in the said interval. In other words, V as a function of p has a jump

at this value of p. If something of this type happens, we say that the system

undergoes a first order phase transition at this value of the parameters.

Interestingly, real systems do exhibit this phenomenon. If the pressure of,

say, water vapour is increased, while the temperature is not too low, at some

specific value of p the volume drops down, i.e. the vapour condenses to

water. It is remarkable that the formalism of thermodynamics easily allows

the incorporation of such striking phenomena. If there is a phase transition,

then the equations of state represent discontinuous functions. This is an

unexpected feature that we are not familiar with from mechanics. This seems

to indicate that classical dynamics and thermodynamics are quite different

and should not have much to do with each other, as it seems inconceivable

that these discontinuities should result from motions governed by Newton’s

equations. Therefore, phase transitions are the most remarkable phenomena

in statistical mechanics, and they will be at the center of our attention
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throughout this book. Even today, they represent one of the most lively

topics of research in the field.

Jumps in the equations of state are the most severe singularities that are

admitted in the theory, due to the convexity assumption. There are milder

forms of singularities that are very interesting, where only higher deriva-

tives of the equations of state are discontinuous. According to the order of

the discontinuous derivative, such phase transitions are called second order,

third order, etc. They are associated with interesting physical phenomena.

The main problem of thermodynamics is that we do not understand what

entropy and temperature are, which represents the main difficulty in under-

standing what the thermodynamic potentials should be as functions of their

parameters. In practice, they are often obtained empirically from experi-

mental data. A derivation from first principles is of course desirable.

The preceding discussion of thermodynamics is of course very cursory.

There are numerous in-depth presentations in the literature. A recent at-

tempt to give an axiomatic foundation of thermodynamics was made in a

paper by Lieb and Yngvason [60], which also contains a wealth of references.
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Principles of Statistical Mechanics

Qu’une goutte de vin tombe dans un verre d’eau; quelle que soit la loi du mouvement

interne du liquide, nous le verrons bientôt se colorer d’une teinte rose uniforme et à

partir de ce moment on aura beau agiter le vase, le vin et l’eau ne parâıtront plus

pouvoir se séparer. Tout cela, Maxwell et Boltzmann l’ont expliqué, mais celui qui

l’a vu le plus nettement, dans un livre trop peu lu parce qu’il est difficile à lire, c’est

Gibbs, dans ses principes de la Mécanique Statistique. 1

Henri Poincaré. La valeur de la science.

About 1870, Ludwig Boltzmann proposed that the laws of thermodynam-

ics should be derivable from mechanical first principles on the basis of the

atomistic theory of matter. In this context, N moles of a gas in a con-

tainer of volume V should be represented by a certain number of atoms,

described as point particles (or possibly as slightly more complicated en-

tities), moving under Newton’s laws. Their interaction with the walls of

the container is given by elastic reflection (or more complicated, partially

idealized constraint-type forces), and would give rise to the observed pres-

sure of the gas. In this picture, the thermal variables, temperature and

entropy, should emerge as effective parameters describing the macroscopic

essentials of the microscopic dynamics state of the gas that would otherwise

be disregarded.

1 Approximately: Let a drop of wine fall into a glass of water; whatever be the law that governs
the internal movement of the liquid, we will soon see it tint itself uniformly pink and from that
moment on, however we may agitate the vessel, it appears that the wine and the water can
separate no more. All this, Maxwell and Boltzmann have explained, but the one who saw it in
the cleanest way, in a book that is too little read because it is difficult to read, is Gibbs, in his
Principles of Statistical Mechanics.

9
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f

v

Fig. 2.1. Weight on the piston exerting a force f on the piston.

2.1 The ideal gas in one dimension

To get an understanding of these ideas, it is best to consider a very simple

example which can be analyzed in full detail, even if it is unrealistic. Con-

sider N particles, all of mass m, that move on a one-dimensional line R and

that absolutely do not interact with each other; in particular they penetrate

each other freely upon impact. We denote the position and momentum of

particle i by qi and pi. Assume further that they are confined to an interval

[0, V ].

When reaching the boundary of this interval, they are perfectly reflected.

Now let the top boundary of the interval (the piston) be movable; assume

that a constant force f is acting on this piston, as shown in Figure 2.1. Then

the container has an energy, Eext = fV , if the piston’s position is V . At

some initial time 0 let the momenta of the particle be pi such that

1

2m

N∑

i=1

p2i = E (2.1)

The total (conserved) energy of the system is then

H = fV + E (2.2)

We will now assume that the dynamics of the system is such that (after a

long time) it runs uniformly over all configurations that are compatible with

the constraint that the energy of the system is constant (this is probably

not the case in our system, but....). Since the kinetic energy of the particles,

E, is non-negative, the position of the piston can only range over the finite

interval [0, Vmax], where Vmax = H/f . Then, the total available state space
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of our system is [0, Vmax] × [0, V ]N × SN√
2m(H−fV )

, where SN
r denotes the

N−1–dimensional sphere of radius r. Our assumptions correspond to saying

that we start the process initially at random on any point of this set with

equal probability, and that we will find ourselves, in the long run, uniformly

distributed on this set (this distribution is called the micro-canonical distri-

bution of our system). As we have explained, thermodynamics is concerned

with the macroscopic observables only, and in our case this is the position

of the piston, V . Finding the equilibrium position of this variable amounts

to computing the probability distribution of the parameter V , to wit

P[V ∈ dV ] ≡
dV
∫
S√

2m(H−fV )
N
dp1 . . . dpN

∫ V

0
dq1 . . . dqN

∫ Vmax
0 dV

∫
SN√

2m(H−fV )

dp1 . . . dpN
∫ V

0 dq1 . . . dqN
(2.3)

Now
∫ V
0 dq1 . . . dqN = V N , and the surface area of the N dimensional sphere

being |SN
r | = 2πN/2

Γ(N/2)r
N−1, we have that
∫

SN√
2m(H−fV )

dp1 . . . dpN

∫ V

0

dq1 . . . dqN (2.4)

= V N 2πN/2

Γ(N/2)
(2m(H − fV ))(N−1)/2

Using this expression, we get that

P[V ∈ dV ] ≡ dV exp
(
N lnV + N−1

2 ln 2m(H − fV )
)

∫ Vmax
0

dV exp
(
N lnV + N−1

2 ln 2m(H − fV )
) (2.5)

When N is large, the integrand is sharply peaked around the value, V ∗, that

maximizes the exponent, N lnV + N−1
2 ln 2m(H − fV ) (more precisely, it

can be evaluated using the saddle point method). Ignoring terms of order

1/N , V ∗ is found by solving the equation

0 = −1

2

f

H − fV ∗ +
1

V ∗ (2.6)

which yields

V ∗ =
2

3

H

f
(2.7)

To elaborate on this, let us introduce the number of particles as a parameter,

and introduce the rescaled variables v ≡ V/N , e ≡ E/N , and u ≡ H/N .

Then

Pu,f,N [v ∈ dv] =
dv exp

(
N ln v + N−1

2 ln(2m(u− fv))
)

∫ vmax
0 dv exp

(
N ln v + N−1

2 ln(2m(u− fv))
) (2.8)

where we used that the extra terms of the form N lnN cancel between the

numerator and the denominator. We now introduce the quantity
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s(u, f ; v) ≡ ln v +
1

2
ln 2m(u− fv) (2.9)

so that (up to negligible terms)

Pu,f,N [v ∈ dv] =
dv exp (Ns(u, f ; v))∫ vmax

0
dv exp (Ns(u, f ; v))

(2.10)

In standard probabilistic terms, (2.10) is a (strong) form of a large devia-

tion principle. One says that the family of probability measures Pu,f,N , in-

dexed byN , satisfies a large deviation principle with rate function−s(u, f ; v)

(where s is considered as a function of v, parametrized by u and f). We will

say more about large deviations later.

For the moment we observe the appearance of a function that is related

to a probability measure that has been instrumental in determining the dis-

tribution of energy between the mechanical energy and heat. This function

has no purely mechanical interpretation. It is called the entropy function,

and its value, computed at the equilibrium value of v, is called the entropy.

In our setting the entropy appears parametrized by u and f ,

s(u, f) = s

(
u, f ;

2

3

u

f

)
=

1

2
ln

2

3
um+ ln

2u

3f
(2.11)

but since f and u determine the equilibrium value of v, and hence e, we can

re-express it in the (natural) variables e and v, to get

s(e, v) = ln
(
v (2em)

1/2
)

(2.12)

In this form, s(e, v) is the inverse of e(s, v), and hence
∂s(e, v)

∂e
=

1
∂e(s,v)

∂s

=
1

T
(2.13)

From here we get an expression for the temperature as function of energy

and volume,

T = 2e (2.14)

Similarly, we can compute

e(s, v) =
e2s

v2
1

2m
(2.15)

and hence the pressure

p ≡ −∂e(s, v)

∂v
= 2e/v (2.16)

Comparing with (2.7), we see that everything is consistent, since, in equi-

librium, p = f ; that is, the thermodynamic pressure, p, equals the external

force, f , acting on the piston.
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Thus, in our simple example, we understand how the equations of thermo-

dynamics arise, and what the meaning of the mysterious concepts of entropy

and temperature is. The equilibrium state of the system is governed by the

external force, and the intrinsic probability of the system to find itself in a

state with a given value of the macroscopic parameter (volume). The prop-

erties of this probability distribution give rise to some effective force (the

pressure) that competes with and has to be equilibrated against the external

macroscopic force.

On the other hand, in our simple example, it is also easy to understand the

pressure as the average force that the gas molecules exercise on the piston

when they are reflected from it. Namely, each time a molecule i is reflected,

its velocity changes from vi to −vi. Hence

t−1

∫ t

0

f(t′)dt′ = t−1

∫ t

0

dt′
∑

i:qi(t′)=V

m
d

dt′
vi(t

′) (2.17)

= t−1
∑

i:qi(t′)=V,t′∈[0,t)

2mvi

It remains to compute the average number of hits of particle i at the piston.

But the time between two hits is 2V/vi, so the number of hits is roughly

tvi/2V , whence

lim
t↑∞

t−1

∫ t

0

f(t′)dt′ =
N∑

i=1

mv2i /V = 2E/V (2.18)

This yields a mechanical explanation of formula (2.16). Now we understand

better why, in the constant volume ensemble, the conserved energy is the ki-

netic energy of the gas, whereas in the constant pressure ensemble (which we

studied first), it is the sum of mechanical and kinetic energy, Ekin+pV . This

also explains the appearance of the Legendre transforms of thermodynamic

potentials when variables are changed.

Exercise: Repeat the computations of the example when the state space is

a three-dimensional cylinder with a piston movable in the z-direction.

2.2 The micro-canonical ensemble

In our first example we have seen that we can derive thermodynamic princi-

ples from probabilistic considerations, and in particular from the assumption

that the state of the system is described by a probability distribution, more

precisely the uniform distribution on the submanifold of the phase space

where the energy function takes a constant value. The idea that the state

of a physical system with very many degrees of freedom should be described
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by a probability measure on the phase space of the underlying mechanical

system is the basis of statistical mechanics. Such a probability measure will

depend on a finite number of parameters, representing the thermodynamic

variables of the system. Thus, each thermodynamic state, say (V, S,N),

corresponds precisely to one probability measure ρ(V,S,N) on the state space.

The rationale behind such a description is the underlying assumption that

the long time means of the dynamics (with suitable initial and boundary

conditions) should converge to the ensemble averages with respect to these

measures.

The micro-canonical ensemble is the most straightforward class of such

thermodynamic states. First of all, we assume that the measure is con-

centrated on a subset of constant value for the energy. This is reasonable,

since we know that for (conservative) mechanical systems the energy is con-

served. Moreover, it follows from Liouville’s theorem that the Hamiltonian

time evolution conserves phase space volume, and thus the uniform measure

is invariant under the time evolution. If Φt is the Hamiltonian flow on phase

space, and A a measurable subset of the phase space P , then∫

A

ρ(dx) =

∫

Φt(A)

ρ(dx) ≡
∫

A

Φ∗
t ρ(dx) (2.19)

where the last equation defines Φ∗
t as the ‘pull-back’ of the flow Φt, i.e. its

action on measures. Hence Φ∗
tρ = ρ, if ρ is any measure that is uniform

on invariant subsets of the flow Φt. Of course, the fact that ρ be invariant

is a necessary requirement for it to be ergodic, i.e. to ensure that for any

bounded measurable function g on the support of ρ,

lim
t↑∞

1

t

∫ t

0

(Φ∗
t′g)(x0) ≡ lim

t↑∞
1

t

∫ t

0

g(Φt′(x0)) =

∫
g(x)ρ(dx) (2.20)

but it is not sufficient at all. What we would need to prove in addition would

be that the system is metrically transitive, i.e. that the energy surface does

not contain further invariant subsets. There are mechanical systems for

which additional conserved quantities exist (e.g. the example of the one-

dimensional ideal gas treated above), in which case we cannot expect (2.20)

to hold. In the micro-canonical ensemble we take as the two other conserved

quantities the volume (inasmuch we talk about confined systems) and the

number of particles. All other possible conserved quantities are ignored.

There is not very much point in arguing about this fact. While certainly it

would be nice to have a complete and rigorous derivation of ergodic theorems

to justify this approach, thus providing a solid link between classical and

statistical mechanics, we have to accept that this is not possible. There are

only very few examples where such a derivation can be given. They concern
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the motion of one or few hard spheres in closed boxes (’Sinai billiards’)

[81, 16, 17]. Worse, even if an ergodic theorem were proven, it is quite unclear

why essentially instantaneous observations of a system should be related to

long-term time averages. A more detailed discussion of these issues can be

found in the book by Gallavotti [34]. For a philosophical discussion of the

probabilistic approach taken by statistical mechanics, we refer for instance

to the recent text by Guttman [44]. The important observation is that for

all practical purposes, statistical mechanics seems to work marvelously well,

and we will focus on the mathematical analysis of the consequences of the

theory rather than on its derivation.

We can now define what we understand by a thermodynamic system.

Definition 2.2.1 A thermodynamic system involves:

(i) A parameter N ∈ N called the particle number,

(ii) a measure space P , and its product space PN ,

(iii) a Hamilton function HN : PN → R,

(iv) constraints depending on macroscopic parameters, such as V .

Remark 2.2.1 In the context of a gas, the space P is the phase space of a

single gas molecule, HN is the interaction, and the constraint is the indicator

function that the position of all molecules should be within the container of

volume V .

Definition 2.2.2 The micro-canonical ensemble of a thermodynamic sys-

tem is the collection of all uniform probability distributions, ρE,V,N , on the

sets

ΩE,V,N ≡ {x ∈ PN : HN (x) = E, x ∈ V } (2.21)

where by x ∈ V we understand that, if x = (p1, q1, . . . , pN , qN ), then qi ∈ V ,

for all i. Note however that we can in general consider different types of

constraints, and V can represent different subsets of the phase space. The

micro-canonical partition function is the function 1

zE,V,N =
1

N !

∫
dxδ(E −HN (x))1Ix∈V (2.22)

where δ denotes the Dirac delta-function2 on R. This choice of the measure

1 In the physics literature one introduces an additional normalizing factor (hdN ), where h is
Planck’s constant. This is done to make the classical and quantum entropies comparable. I
will choose h = 1.

2 The delta function is defined such that for all smooth test functions φ,
∫
dEφ(E)δ(E − a) =

φ(a). It follows that, if Φ is a function on PN , then
∫
dE

∫
dxδ(E −HN (x))Φ(x)φ(E) =∫

dxΦ(x)φ(HN (x)).
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ensures its invariance under the Hamiltonian flow3. The entropy is defined

as

S(E, V,N) ≡ ln zE,V,N (2.23)

Note that the factor 1/N ! is introduced to take into account that particles

are indistinguishable and ensures that S is proportional to N .

The micro-canonical partition function is the normalizing constant that

turns the flat measure,

ρ̃E,V,N(dx) ≡ 1

N !
dxδ(E −HN (x))1Ix∈V (2.24)

into a probability measure, i.e.

ρE,V,N(dx) =
1

zE,V,N
ρ̃E,V,N(dx) (2.25)

It may look surprising that such a normalizing constant can have physical

significance, since after all it depends on the choice of the initial unnormal-

ized measure, that is largely arbitrary. This significance will arise from the

parameter dependence of this constant, as we will see shortly.

We will assume henceforth that S(E,V,N) is a differentiable function.

This is certainly the case for classical systems where HN (x) =
∑N

i=1
p2i
2mi

+

Φ(q) at any energy E > min(Φ) (see, e.g., [42]). Then the derivatives of

S determine the parameters pressure, temperature, and chemical potential1

via

∂S(E, V,N)

∂E
=

1

T
≡ β

∂S(E, V,N)

∂V
=

p

T
(2.26)

∂S(E, V,N)

∂N
=

1

µ

Thus, computing the entropy of the system allows us to engage the full

thermodynamic formalism and to compute all kinds of interesting quantities
2.

In particular, if we want to couple the gas to a mechanical source of

3 In many physics textbooks, one uses a soft version of this measure, namely the Lebesgue
measure of the set {x ∈ PN : |HN (x) − E| < ǫ}. For all practical purposes, this yields the
same results.

1 I set Boltzmann’s constant, k, equal to 1. In physical conventions the first equation of (2.26)

reads
∂S(E,V,N)

∂E
= 1

kT
≡ β.

2 It is a somewhat annoying feature of thermodynamics that the intensive variables are defined as
the derivatives of the energy when the extensive quantities, in particular the entropy, are kept
fixed. This leads to the fact that the inverse temperature, which appears as the derivative of
the entropy, is often the more natural quantity to consider than the temperature itself. It would
probably be more rational to consider the entropy as the most fundamental thermodynamic
potential and to consider its derivatives as the natural intensive variables.
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energy (e.g. through a movable piston at which a fixed force of strength f

acts), passing to the conserved quantity H = E + fV , we can derive the

distribution of the position of the piston as

P(V ∈ dV ) =
dV exp(S(V,H − fV,N))∫
dV exp(S(V,H − fV,N))

(2.27)

from which the equilibrium piston position results as the value of V with

maximal entropy, and in particular the solution of the equation
dS(V,H − fV,N)

dV
= 0 (2.28)

(with H and f fixed), as in the example treated above. We see that
dS(V,H − fV,N)

dV
=

∂S

∂V
− f

T
=

p

T
− f

T
(2.29)

so that indeed in the equilibrium position, the thermodynamic pressure p is

equal to the external force f acting on the piston.

Let us look back at what precisely we have done here from the point of

view of probability measures. Our underlying assumption is that the a-priori

probability distribution of the system with movable piston is given by the

uniform measure on the available state space, including the position of the

piston, i.e. by the probability measure

ρ̂H,f,N (dx, dV ) ≡ dV ρ̃H−fV,V,N(dx)∫
dV
∫
ρ̃H−fV,V,N(dx′)

(2.30)

=
dV zH−fV,V,NρH−fV,V,N(dx)∫

dV zH−fV,V,N

= dV ρH−fV,V,N(dx)
exp (S(H − fV, V,N))∫
dV exp (S(H − fV, V,N))

In particular, if we are only looking on the distribution of the internal degrees

of freedom, we obtain the distribution

ρ̌H,f,N (dx) =

∫
dV ρH−fV,V,N(dx)

exp (S(H − fV, V,N))∫
dV exp (S(H − fV, V,N))

=

∫
P[V ∈ dV ]ρH−fV,V,N(dx) (2.31)

which can be seen as a mixture of micro-canonical distributions. We see

that the entropy governs the probability with which we see a given micro-

canonical distribution ρH−fV,V,N (dx) if V is allowed to vary.

In a similar way we can understand the physical significance of the tem-

perature. To this end we consider a cylinder with a fixed piston separating

the cylinder into two volumes V1, V2 (see Fig. 2.2). Assume that there are

N1, N2 molecules in each partition (possibly of different types of gases). As-

sume that the piston allows for energy to pass from one part to the other.
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V2, E2, N2V1, E1, N1

Fig. 2.2. Piston containing two gases separated by a wall permitting energy transfer.

Then the total energy E = E1+E2 is conserved. We would like to know the

probability distribution of the value E1. According to our assumption that

the distribution of the atoms in the two containers, given the values Ei, will

be the uniform distributions, ρEi,Vi,Ni , on the sets H
(i)
Ni
(x) = Ei, we get

P(E1 ∈ dE1) =
dE1 exp(S1(V1, E1, N1) + S2(V2, E − E1, N2))∫
dE1 exp(S1(V1, E1, N1) + S2(V2, E − E1, N2))

(2.32)

Thus, the probability distribution of E1 has a (pronounced) maximum

when
∂S1(V1, E1, N1)

∂E1
− ∂S2(V2, E − E1, N2)

∂E1
= 0 (2.33)

In other words, the two systems are in equilibrium when the partial deriva-

tives with respect to the energy of their entropies, the inverse temperatures,

are the same. This is sometimes called the zeroth law of thermodynamics.

As in the preceding discussion, we could introduce the probability distri-

bution of the coupled systems as

ρ̌E,V1,V2,N1,N2 (dx1, dx2) (2.34)

=

∫ E

0

dE1
exp (S1(V1, E1, N1) + S2(V2, E − E1, N2))∫

dE1 exp (S1(V1, E1, N1) + S2(V2, E − E1, N2))

×ρE1,V1,N1(dx1)ρE−E1,V2,N2(dx2)

Note that in the previous consideration we could have replaced the second

system by some artificial device with a fictitious entropy βE2. Such a de-

vice would then enforce the temperature of any system that is energetically

coupled to it to take the value T = 1/β. In thermodynamics this would be

called a thermostat.

Example 2.2.1 The ideal lattice gas. In the course of this book we will

soon concentrate on simple systems in which the classical particles are re-

placed by particles with a discrete number of degrees of freedom. The sim-

plest such system is the ideal lattice gas. Here we consider, instead of our
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Fig. 2.3. A lattice gas configuration on a square lattice.

usual phase space, a finite subset, Λ, of some discrete lattice Z
d. We de-

note by V ≡ |Λ| the number of vertices of this lattice. We consider a fixed

number, N , of particles, whose degrees of freedom are just their positions

xi ∈ Λ. A configuration of particles is depicted in Fig. 2.2.1. We will assume

that the particles can sit on top of each other, and that the energy is simply

proportional to the number of particles,

E = µN (2.35)

Then the micro-canonical partition function is simply the number of ways

we can arrange N particles on the V sites of the lattice,

zE,V,N =
V N

N !
= exp (N lnV − lnN !) (2.36)

so that the entropy is

S(E, V,N) = N lnV − lnN ! ≈ N(ln v + 1) (2.37)

Note that, due to the strict relation between energy and particle number,

there are really only two independent extensive variables in this model. We

see that the pressure is
p

T
= N/V = E/µV (2.38)

Exercise: Consider the lattice gas with the additional constraint that no

more that one particle can occupy the same site.

Interestingly, the micro-canonical entropy is equal to what one would call

the entropy of the measure ρE,V,N . In fact, let ρ be any probability measure

on the support of ΩE,V,N . Then the (relative) entropy of ρ (with respect to

the uniform measure, ρ0 ≡ ρ̃E,V,N , on this set) is defined as
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h(ρ, ρ0) ≡
∫

ln
dρ(x)

dρ0(x)
dρ(x) (2.39)

Now let ρ0 be the (unnormalized) uniform measure on the phase space of N

particles in volume V and with total energy E.

It is not difficult to see that the unique minimizer of this function is the

uniform probability measure on the same set, i.e. ρE,V,N , and that

h(ρE,V,N , ρ0) = −S(E, V,N) (2.40)

Thus, we can say that the micro-canonical distribution is characterized by

the fact that it minimizes the relative entropy with respect to the uniform

measure on the accessible state space. This statement would appear even

more profound if we had not been forced to make an a priori choice of the

measure ρ0. Nonetheless, its gives an interesting interpretation of the micro-

canonical distribution. Moreover, it would appear that the dynamics of a

gas, started initially in any configuration (or any probability distribution

concentrated on it) on the energy shell, should have a tendency to evolve

towards the uniform distribution, thus increasing entropy. This fact ap-

peared for quite some time an obstacle in accepting the basic premises of

statistical mechanics, as it appeared in contradiction to the reversible na-

ture of the Newtonian laws of classical mechanics1. Such a contradiction,

however, does not exist. This may be easiest understood in the example of

our moving piston. For statistical mechanics to be relevant, it must be true

that, if this system is started with any position of the piston, the piston’s

position should evolve to its equilibrium position (rather fast), and then be

seen there (almost) all the time. Indeed, few people (of any minimal level of

integrity) claim to have seem huge motions of such pistons (unless someone

was fiddling with the equipment). So clearly the piston movement looks

rather irreversible, although everything is pure classical mechanics. Is there

a contradiction? Clearly not, since our argument was based on microscop-

ically sound reasoning: the motion of the molecules is fully reversible, and

follows the laws of classical mechanics. The trajectories can, in principle,

reach all points in the energetically available phase space, including those

where the piston is is not at its equilibrium position. However, the number of

configurations where the piston is not close to this position is so ridiculously

small compared to those when it is, that the occurrence of such instances

is exquisitely rare if N is large. Thus, if only the motion of the piston is

observed, we get the impression that there is a preferred direction in time.

But this is not so. If we reversed time, we would observe exactly the same

1 This discussion is still not extinct today.
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phenomenon. Only by preparing very special, non-typical initial conditions,

could we observe the system at a given later time in a state where the piston

is not in its equilibrium position, and that is not going to be re-observed in

a very very long time.

If one accepts the basic principles laid out above, we can use thermody-

namics, provided we can compute the micro-canonical partition function.

Unfortunately, this is not in general an easy task. In many ways, statis-

tical mechanics is not so much a question of principles, but a question of

computational techniques.

2.3 The canonical ensemble and the Gibbs measure

The difficulty of the computations in the micro-canonical ensemble comes

from the fact that it always involves constrained integral over some manifold

HN(x) = E in a space of very high dimensions. It is simply a very difficult

geometric problem to compute the area of a very high dimensional manifold.

We have been able to do this for the sphere, and we may be able to do it for

a few more examples, but in general this is hopeless. Even numerically, this

is a next to impossible task. A way to get to a more accessible expression is

to change ensembles, i.e. to consider a system where the energy is no longer

fixed, but allowed to vary, while the conjugate variable, the temperature, is

fixed. We have already seen in the previous section that this can be achieved

by introducing a fictitious thermostat with which the system can exchange

energy. This leads to introducing the distribution

Gβ,V,N(dx) =

∫
dEe−βEzE,V,NρE,V,N(dx)∫
dEe−βE

∫
ρE,V,N(dx)

=
1
N !e

−βHN (x)dx
1
N !

∫
dxe−βHN (x)

(2.41)

The denominator is called the canonical partition function

Zβ,V,N ≡ 1

N !

∫
dxe−βHN (x) (2.42)

where the combinatorial factor is introduced for the same reason as in the

definition of the entropy in the micro-canonical ensemble. Let us investigate

the thermodynamic meaning of these quantities. As we have already seen,

this measure is concentrated where

β =
∂S(E, V,N)

∂E
(2.43)

and then

Zβ,V,N =

∫
dEe−βE+S(E,V,N) =

∫
dEe−βF̃ (T,V,N ;E) (2.44)

where F̃ is called the free energy functional
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F̃ (T, V,N,E) = E − TS(E, V,N) (2.45)

F̃ is an extensive quantity, and thus the integrand in (2.44) will be sharply

concentrate on the set of values of E around the equilibrium values of the

energy, E∗(V, T,N), at temperature β−1, defined as solution of (2.43). This

suggests that

lnZβ,V,N ≈ −βF (T, V,N) (2.46)

where F is the thermodynamic free energy,

F (T, V,N) ≡ F̃ (T, V,N,E∗(V, T,N)) (2.47)

Equation (2.46) gives an alternative connection between thermodynamics

and statistical mechanics, i.e. an alternative prescription how to compute a

thermodynamic potential from a mechanical basis. We will have to investi-

gate this relation a little more carefully.

Theorem 2.3.1 Assume for a statistical mechanical system that the micro-

canonical entropy satisfies

lim
N↑∞

N−1S(E, V,N) = s(e, v) (2.48)

where limN↑∞ V/N = v and limN↑∞ E/N = e, and s is a strictly concave,

upper semi-continuous function, such that, for all β ≥ 0,∫

s(e,v)−βe≤a

exp (N(s(e, v)− βe)) de ≤ CeNa (2.49)

Define the function f(β, v) by

βf(β, v) = min
e

(eβ − s(e, v)) (2.50)

Assume further that convergence in (2.48) is such that uniformly in e,
(S(E,V,N)−Eβ)
N(s(eN,vN)−βe) → 1. Then, for any β, such that s(e, v) has bounded deriva-

tives in a neighborhood of e∗,

lim
N↑∞

1

βN
lnZβ,V,N = −f(β, v) (2.51)

Remark 2.3.1 βf is called the Legendre transform of s. If s is differen-

tiable and strictly concave, then

f(β, v) = e∗(v, β) − β−1s(e∗(v, β), v) (2.52)

then e∗ is the unique solution of the equation

β =
∂s(e, v)

∂e
(2.53)
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Proof. Basically, we have to show that the integral receives almost no con-

tribution from values of e such that s(e, v) − βe ≤ (s(e∗, v) − βe∗) − δ.

This is ensured by assumption (2.49). From the complement of this region,

Dδ ≡ {e ∈ R : s(e, v)−βe > (s(e∗, v)−βe∗)− δ, it gets a contribution of the

desired order, provided this set is neither too small nor too large, which our

differentiability assumptions imply. Our assumption of the uniform conver-

gence ensures that, for large N , we can replace the integrand by its limit,

since, for any ǫ > 0, there exists N0 ∈ N, such that for all N ≥ N0, for all e,

|N−1[S(E, V,N)− βE]− (s(e, v)− βe)| ≤ ǫ|s(e, v)− βe| (2.54)

Therefore, for such N ,∫

Dc
δ

de exp (−βeN + S(eN, V,N)) (2.55)

≤
∫

Dc
δ

exp (N(s(e, v)− βe) + [(S − βE)−N(s− βe)]) de

≤
∫

Dc
δ

exp (N(s(e, v)− βe) + ǫ|s(e, v)− βe|) de

≤ C exp (N [s(e∗, v)− βe∗ + ǫ|s(e∗, v)− βe∗| − δ])

On the other hand, for N large enough,∫

Dδ

de exp (−βeN + S(eN, V,N)) ≤ C exp (N [s(e∗, v)− βe∗](1 + ǫ)) (2.56)

and, since the function s has bounded derivatives, on a set of size N−1 the

integrand cannot vary by more than a constant factor, for some c > 0,∫

Dδ

e−βeN+S(eN,V,N)de ≥ cN−1eN [s(e∗,v)−βe∗](1+ǫ) (2.57)

Taking the logarithm and dividing by N , we obtain that for any ǫ > 0 (we

chose the signs as if f were negative, otherwise they have to be reversed),

we obtain that

−βf(β, v)(1 − ǫ) ≤ lim inf
N↑∞

1

N
ln

∫
de exp (−βeN + S(eN, V,N))

≤ lim sup
N↑∞

1

N
ln

∫
de exp (−βeN + S(eN, V,N))

≤ −βf(β, v)(1 + ǫ) (2.58)

which implies the assertion of the theorem.

The measure defined by equation (2.41) is called the Gibbs measure or

the canonical ensemble. Theorem 2.3.1 is a (not very strong) formulation of

the equivalence of ensembles. As stated it justifies the use of the canonical

ensemble to compute thermodynamic quantities from the canonical rather
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than the micro-canonical partition function, i.e. it allows to define the free

energy in terms of the logarithm of the partition function and to derive

all thermodynamic quantities (including the entropy) from it via Legendre

transformation. It is important to note that this equivalence holds in the

limit of infinite particle number (and in consequence, infinite volume, energy,

etc.). Thus, we encounter, for the first time, the notion of the thermodynamic

limit. Then linking statistical mechanics to thermodynamics, we are really

only interested in understanding what happens when the size of our systems

tends to infinity. We will have to discuss this issue in far greater detail later

on.

In the course of the proof of Theorem 2.3.1 we have seen (in spite of the

fact that we have been rather careless) that more is true than just the fact

that the free energy can be computed from the canonical partition function.

Rather, we see that the Gibbs measure, even if it is a-priori supported on

all possible values of the energy, really is concentrated on those states whose

energy is very close to the preferred value e∗(v, β). In fact, we should expect

that

Gβ,V,N ∼ ρE∗(β,V,N),V,N (2.59)

in an appropriate sense when N tends to infinity. But to discuss such a

question with some precision requires a more profound understanding of the

meaning of the limit N ↑ ∞ for measures on the phase space, a question

that we will address only in Chapter 4.

The beauty of the equivalence of ensembles is that, computationally, it is

much easier (even though still hard enough) to work with the Gibbs measure,

than with the micro-canonical measure. This should not be a surprise:

working with constraints is always hard, and the canonical ensemble allows

us to get rid of one annoying constraint, namely to keep the energy fixed.

And the nice feature of the theorem is that it tells us that not fixing the

energy is fine, because this will be taken care of effectively automatically.

Example: The classical ideal gas. Here the Hamiltonian is

HN (p, q) =

N∑

i=1

p2i
2m

(2.60)

Thus, the canonical partition function is
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ZV,β,N =
1

N !

∫
dNp

∫ V

0

dNq exp

(
−β

N∑

i=1

p2i
2m

)

=
1

N !

[∫
dp

∫ V

0

dq exp

(
−β

p2

2m

)]N
(2.61)

=
1

N !
V N [2πm/β]

N/2

We see that this computation does not even require the knowledge of the

formula for the surface area of the N -dimensional sphere, which we used in

the micro-canonical formula. Stirling’s formula states that

N ! ∼
√
2πNe−NNN (2.62)

and so

f(β, v) =
−1

βN
lnZV,β,N ∼ −β−1 ln

(
e
√
2πm/βv

)
(2.63)

Exercise: Compute the entropy for the one-dimensional gas from this for-

mula. Compute the entropy directly from the micro-canonical partition

function and compare. Do the same for the three-dimensional ideal gas.

2.4 Non-ideal gases in the canonical ensemble

The remarkable simplicity with which we have computed the free energy in

the ideal gas could encourage us to look at non-ideal gases. Suppose we are

given a Hamiltonian function

HN (x) =

N∑

i=1

p2i
2m

+Φ(q1, . . . , qN ) (2.64)

where, reasonably, Φ could represent a pair interaction potential of the form

Φ(q1, . . . , qN ) =

N∑

i6=j

φ(qi − qj) (2.65)

The pair interaction, φ, should incorporate at least some short-range repul-

sion, and possibly some weak long-range attraction. The simplest choice

would be a hard-core exclusion, that just forbids the particles to penetrate

each other:

φh.c.
a (q) =

{
0, if |q| > a

+∞, if |q| ≤ a
(2.66)

What about the partition function in this case? We have
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Zβ,V,N =
1

N !

∫

V

dq

∫
dp exp

(
−β

N∑

i=1

p2i
2m

− βΦ(q1, . . . , qN)

)
(2.67)

We may feel encouraged by the fact that half of the integrals can immediately

be computed:
∫

dp exp

(
−

N∑

i=1

p2i
2m

)
=

(
2πm

β

)dN/2

(2.68)

where d is the number of spatial dimensions, so that

Zβ,V,N =
1

N !

(
2πm

β

)dN/2 ∫

V

dq exp (−βΦN (q)) (2.69)

which we could express as

Zβ,V,N =
1

N !

(
2πm

β

)dN/2

Zred
β,V,N (2.70)

where the reduced partition function is

Zred
β,V,N ≡ 1

N !

∫

V

dq exp (−βΦN (q)) (2.71)

We see that in the non-ideal gas, we can reduce the computation of the

partition function to that of a partition function involving only the positions

of the particles. Of course, this gain is limited, since we cannot compute

this reduced partition function, except in very special cases.

One of these misleadingly simple cases is the one-dimensional hard-core

gas. Here we have

Zred
β,V,N =

1

N !

∫

V

dq1 . . . dqNe−β
∑

i6=j φh.c.
a (qi−qj) (2.72)

Note that the integrand takes only two values: one, if all particles are at

distance at least a apart from each other, and zero else. Now in one di-

mension, it is easy to see how to evaluate this integral. First, there are N !

ways i1, . . . , iN to arrange the particles such that qi1 < · · · < qiN , each of

which contributes in the same amount to the partition functions. Then each

distance of consecutive particles must be at least a. Thus

Zred
β,V,N =

∫ V

(N−1)a

dqN

∫ qN−a

(N−2)a

dqN−1 . . .

∫ q3−a

a

dq2 . . .

∫ q2−a

0

dq1 (2.73)

Changing variables to yi = qi − (i− 1)a, this can be written as
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Zred
β,V,N =

∫ V−(N−1)a

0

dyN

∫ yN

0

dyN−1 . . .

∫ y3

0

dy2

∫ y2

0

dy1

=

∫ V−(N−1)a

0

dyN

∫ yN

0

dyN−1 . . .

∫ y3

0

dy2y2 (2.74)

=

∫ V−(N−1)a

0

dyN

∫ yN

0

dyN−1 . . .

∫ y4

0

y23
2

=

∫ V−(N−1)a

0

dyN
yN−1
N

(N − 1)!
=

(V − a(N − 1))N

N !

Thus, with V = vN ,

N−1 lnZred
β,V,N = lnN(v − a(1− 1/N))−N−1 lnN ! ∼ ln(v − a) + 1 (2.75)

and so the full free energy of the hard core gas in one dimension is (in the

limit N ↑ ∞)

f(β, v) = −β−1(ln(v − a) + 1)− 1

2β
ln

(
2πm

β

)
(2.76)

We see that f has a singularity at v = a, which is natural, as we cannot

pack too many particles into too small a volume. Moreover, we see that
∂f(β, v)

∂v
= −β−1 1

v − a
(2.77)

Now thermodynamically, the negative of this derivative is the pressure, i.e.

the equation of state is

p = β−1 1

v − a
(2.78)

Naturally, the pressure tends to infinity as the volume is filled up.

Not an exercise: Try to repeat the computations for dimensions larger

than one.

2.5 Existence of the thermodynamic limit

When we introduced the canonical ensemble, we were assuming that the

entropy per particle has a limit, as the size of the system tends to infinity. We

have seen in the case of the ideal gas (and also in the one-dimensional hard-

core gas) that such limits do exist. An important question for establishing

the correspondence between thermodynamics and statistical mechanics is to

what extent the existence of such limits is general. We will discuss the issue

of thermodynamic limits at length later. At this point we want to consider

the weakest version that relates only to the validity of the thermodynamic

formalism.
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In fact, in the preceding discussion we have been careless about the mean-

ing of the variable N . When we introduced thermodynamics, we mentioned

that this variable represents the amount of mass, measured originally in

moles. At the same time we alluded to the fact that this number may also

measure the number of molecules, and it was in this capacity that we treated

N as a large number as soon as we started to discuss thermodynamics. It is

time to make it clear that these two uses of the same variable are misleading,

and that these two notions of mass are quite different.

Let us first note that in thermodynamics the variable N is (as long as

we consider systems containing a single type of molecules) redundant due

to the assumptions that all extensive quantities are homogeneous functions

of degree one in the variable N . Thus, e.g., E(V, S,N) = Ne(V/N,S/N) =

e(v, s), S(E,V,N) = Ns(V/N,E/N) = s(e, v), etc. The quantities v, e, s, . . .

are often called specific volume, energy, entropy, etc. By this assumption,

thermodynamics is really only concerned with these functions.

When introducing statistical mechanics, we had been defining entropy or

free energy in terms of logarithms of partition functions with a given num-

ber of particles. This was actually imprecise. If we claim that S(E,V,N) =

ln zE,V,N , even in the simplest example it is not strictly true that this func-

tion will be strictly a homogeneous function in N . Therefore, the true

relation between statistical mechanics and thermodynamics stipulates such

relations ‘to leading order in N ’, where N is now really the number of

particles. In other words, the proper relation between the thermodynamic

quantities and the objects of statistical mechanics is more like

lim
N↑∞

1

N
ln zeN,vN,N = s(e, v) (2.79)

respectively

lim
N↑∞

−1

βN
lnZβ,vN,N = f(β, v) (2.80)

This formulation gives rise to a number of questions. The first is under which

circumstances can we expect such limits to exist? The second is related to

the meaning of the volume variable. When computing partition functions,

we have to specify, in principle, not only the value of the ‘volume’ of our

system, but also its precise shape (e.g. a cylinder, a cube, a sphere), as

this may influence the result. On the other hand, thermodynamics does

not usually concern itself too much with such shapes. For this to make

sense, the limits in (2.79) and (2.80) should not be terribly dependent on

the shape of the volumes of the systems along which the limit is taken. In

fact, for systems with short-range interactions, it can be shown that this is
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Lk−1

Lk

Lk+1

r0

Fig. 2.4. Nested sequence of boxes Vk−1, Vk, Vk+1.

true provided that the volumes are reasonable in the sense (of van Hove)

that the ratio of surface to volume goes to zero.

At this point we will present one of the earliest proofs in the context of

non-ideal gases. The idea goes back to van Hove [90] and the complete proof

was given by Ruelle [75] and Fisher [32].

The system we will consider is a gas with Hamiltonian of the form (2.64)

with a pair interaction of the form (2.65). We will consider a pair interaction

with hard-core repulsion and bounded, finite range attraction, i.e. we assume

that there are real numbers, 0 < r0 < b < ∞, and ǫ > 0, such that

−ǫ < φ(q) =





+∞, |q| < r0

≤ 0, r0 ≤ |q| ≤ b

= 0, |q| > b

(2.81)

Now consider a sequence of cubic boxes, Vk, of side-lengths Lk+1 = 2Lk+2r0,

as shown in Figure 2.5. This allows us to place 2d boxes Vk into Vk+1 in such

a way that their distances from each other are r0 and from the boundary

are r0/2. We choose Nk+1 = 2dNk.

We then have that

lim
k↑∞

|Vk|
Nk

= lim
k↑∞

V0

N0

k∏

l=0

(
1 +

2r0
Ll

)d

≡ v (2.82)

Here the last limit exists by monotonicity and the trivial observation that

Ll > 2lL0, so that (using 1 + x ≤ ex)
k∏

l=0

(
1 +

2r0
Ll

)
≤ exp

( ∞∑

l=0

2r0/L02
−l

)
≤ exp (4r0/L0) (2.83)
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The (reduced) partition function in the k + 1st step is then

Zβ,Vk+1,Nk+1
(2.84)

=
1

Nk+1!

∫

Vk+1

exp


−β

∑

1≤i6=j≤Nk+1

φ(qi − qj)


 dq1 . . . dqNk+1

The key idea is now to get a lower bound by restricting the integrals over

the qi such that the particles may only be in the 2d boxes, Vk, contained

in Vk+1 and to insist, moreover, that the number of particles in each one

is equal to Nk. There is an obvious combinatorial number, Nk+1!/Nk!
2d ,

of possible arrangements of the particles in the different boxes. Note that

there is no positive interaction between the particles in the different sub-

boxes, while the negative (attractive) interactions only increase the value of

Zβ,Vk+1,Nk+1
, compared to the situation when all interactions between these

boxes are removed. These considerations show that

Zred
β,Vk+1,Nk+1

≥
(
Zred
β,Vk,Nk

)2d
(2.85)

and hence

ak+1 ≡ 1

Nk+1
lnZred

β,Vk+1,Nk+1
≥ 1

Nk
lnZred

β,Vk,Nk
= ak (2.86)

Thus, the sequence of numbers ak is increasing and will converge, if it is

bounded from above. In fact, the only thing that might prevent this from

being true is the possibility that the potential energy, for some configu-

rations, could go to −∞ faster than CNk. Namely, the formula for the

potential energy involves, in principle, N2 terms, φ(qi − qj), and if all of

them contributed −ǫ, we would be in rather bad shape. This could happen

if there were no repulsive part of the interaction, since then all particles

might get very close to each other. However, due to the repulsive hard core,

particles cannot get closer than a distance r0 to each other, and thus the

number of particles within the finite range b of the attractive interaction is

bounded by c(b− r0)
d, so that∑

1≤i6=j≤N

φ(qi − qj) ≥ −cǫ(b− r0)
dN ≡ −BN (2.87)

Thus

Zred
β,Vk,Nk

≤ 1

Nk!

∫

Vk

dq1 . . . dqNk
eβBNk (2.88)

≤ eNkN−Nk

k |Vk|NkeβBNk ≤ e(βB+1)NkvNk

and so

ak ≤ (βB + 1) + ln v < ∞ (2.89)
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This proves the convergence of the free energy along the special sequences

Nk. It is, however, not very difficult to show that this implies convergence

along arbitrary sequences, provided the shapes of the boxes are such that

volume dominates surface.

Also, both the hard-core and the finite range condition of the potential

can be relaxed. In fact it is enough to have (i) a uniform lower bound, (ii)

an asymptotic lower bound φ(q) ≥ C|q|−d−ǫ, for some ǫ > 0, as |q| ↓ 0,

and (iii) an asymptotic upper bound |φ(q)| ≤ C|q|−d−ǫ, for some ǫ > 0, as

|q| ↑ ∞. Note that these conditions are not satisfied if the only forces present

are gravity and the electrostatic forces. Fortunately, due to quantum me-

chanical effects, the effective interactions between molecules are usually less

dangerous. Still, the stability condition (2.87) is quite generally a problem

when working with interacting gases.

Convexity. The proof of convergence outlined above yields almost as a by-

product another important property of the free energy, namely convexity.

Convexity of thermodynamic potentials was a postulate of thermodynamics,

and is crucial for the equations of state to define single-valued functions

(as long as it is strict). Certainly, convexity should be a consequence of

statistical mechanics.

We will show that in our gas the free energy is convex as a function of

v. To this end we use the same partition of the volume Vk+1 as before, but

this time we chose the number of particles in the different cubes to be not

uniform, but instead put into half of them N1
k = ρ1Nk and in the other half

N2
k = ρ2Nk particles. By the same argument as before, we obtain that

Zred
β,Vk+1,(ρ1+ρ2)Nk+1/2

≥
(
Zred
β,Vk,ρ1Nk

)2d−1 (
Zred
β,Vk,ρ2Nk

)2d−1

(2.90)

and hence

1

Nk+1
lnZred

β,Vk+1,(ρ1+ρ2)Nk+1/2
≥ 1

2

(
1

Nk
lnZred

β,Vk,ρ1Nk
(2.91)

+
1

Nk
lnZred

β,Vk,ρ2Nk

)

Since we know that limk↑∞
1
Nk

lnZred
β,vNk ,Nk

≡ a(β, v) exists, it follows from

(2.91) that
ρ1 + ρ2

2
a(β, 2v/(ρ1 + ρ2)) ≥

ρ1
2
a(β, v/ρ1) +

ρ2
2
a(β, v/ρ2) (2.92)

In other words, the function g(ρ) ≡ ρa(β, v/ρ) satisfies

g((ρ1 + ρ2)/2) ≥
1

2
(g(ρ1) + g(ρ2)) (2.93)

Thus, g is a concave function of its argument (the inverse volume, rep. the

density).
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Exercise: Show that the concavity of g implies that −a(β, v) is a convex

function of v, and that thus the free energy, f(β, v), of the class of gases

considered above, is a convex function of the (specific) volume. Use a dif-

ferent (and simpler) argument to show that the free energy is also a convex

function of the temperature.

2.6 The liquid-vapour transition and the van der Waals gas

Convexity of the free energy implies that the pressure is a deceasing func-

tion of the volume. As long as f is strictly convex, the pressure is strictly

increasing, and thus the function p(v, T ) is uniquely invertible. We have

already alluded to the fact that a first-order phase transition occurs if ther-

modynamic potentials are not strictly convex, i.e. contain linear pieces. In

our case, if for some temperature the free energy were linear on an inter-

val [v1, v2], this would imply that the pressure p(v, T ) was constant p0 as

v is varied over this interval and, by consequence, the inverse function is

not uniquely defined: for this value of the pressure, v could be anywhere

in [v1, v2]. Moreover, as p is varied over p0, the volume (resp. the density)

jumps suddenly from v1 to v2. This is what is actually observed in real

gases: at least if the temperature is sufficiently low, there exists a critical

value of the pressure at which the gas condenses, i.e. transforms itself into

a considerably more dense phase, called a liquid. Such singular behaviour

is called a (first-order) phase transition. Phase transitions are maybe the

most exciting aspect of thermodynamics, since they are something quite out

of the ordinary from the perspective of classical mechanics. They represent

something totally new and specific for thermodynamic systems.

In the context of thermodynamics, it is easy to produce systems with

phase transitions: just choose appropriate thermodynamic potentials. It

is an altogether more difficult matter to reproduce phase transitions from

statistical mechanics, and indeed the issue of whether this was possible has

been debated until about the middle of the twentieth century.

So far, all the thermodynamic potentials we have computed have been

strictly convex. Neither the ideal gas, not the hard-core gas in dimension

one show any sign of a phase transition. On the other hand, the van Hove

gas we discussed above seems to incorporate all the main features of a real

gas, and thus it should show a phase transition. Unfortunately, we cannot

compute its free energy (well, we haven’t really tried, but we also have no

idea how we could do this. But many people have tried and there is no proof

as of today that there is something like a liquid-vapour phase transition in
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this gas1). The difficulties related to classical non-ideal gases will lead us

soon away to more manageable systems, but before moving there, I will

at least discuss one example of a non-ideal gas that shows such a phase

transition. This is the classical van der Waals gas.

The van der Waals gas was introduced in the thesis of that person in

1873 in the context of thermodynamics. That is, he proposed to modify the

equation of state of the hard-core gas by adding an extra term that was to

take into account the attractive part of the interaction, writing

βp =
1

v − a
− β

2
αv−2 (2.94)

I do not know how he got his thesis accepted, because this equation violates

one of the basic principles of thermodynamics, the monotonicity of the pres-

sure. But, as we will see, it can produce somehow a phase transition, and it

can be obtained from statistical mechanics.

The derivation of the van der Waals equation was proposed by Ornstein

in 1908, also in his thesis. He suggested to introduce a potential consisting

of the hard-core repulsion we have already discussed and a very long-range

attraction

Φattr
V (q) ≡ − 1

V

∑

i6=j

α/2 = −α
N2

2V
(2.95)

Since this term is totally independent of the configuration q, we get that

Zred,vdw
β,V,N = e+βαN/2vZred,h.c.

β,V,N (2.96)

and so

fvdw(v, β) = fhc(v, β)−
α

2v
(2.97)

At least in one dimension we compute the free energy of the hard-core gas

and thus, in dimension one,

fvdw(v, β) = −β−1(ln(v − a) + 1)− α

2v
− β−1 1

2
ln

(
2πm

β

)
(2.98)

from which the van der Waals equation of state (2.94) follows immediately.

The function fvdw(v, β) is shown in Fig. 2.6.

In dimension d > 1 we cannot compute the free energy of the hard-core

gas, but one might accept that it will look similar to the one-dimensional

one. Thus, the general conclusions should remain valid.

One can easily check that the free energy, fvdw, is in general not a convex

function of the volume, and that the equation of state (2.94) does not give

p as a monotone function of v. Thus, we cannot invert this to obtain v as a

1 There is, however, a proof of the existence of such a transition in a very special situation which
roughly mimics such a gas, due to Lebowitz, Mazel, and Presutti [57] that dates from 1999.
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Fig. 2.5. Free energy surface in the van der Waals gas.
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Fig. 2.6. Subcritical and supercritical isotherms.

function of p; in fact, there are values of p for which there are three possible

values of the volume (see Figs. 2.6 and 2.6). Moreover, the pressure as a

function of the volume will sometimes decrease. This is not something that

anyone has ever observed in a real gas. We have a problem.

Maxwell, in 1874, just a year after van der Waals’ thesis, corrected the

van der Waals theory by stating (in a few more words) that the correct free

energy should be taken as the convex hull (the convex hull of a function f

is the largest convex function that is less then or equal to f ; it can also be

obtained as the twice iterated Legendre transform of f) of the free energy

fvdw. It took until 1963 until it was understood (by Kac, Uhlenbeck, and

Hemmer [51]) how this Maxwell construction can be derived from statistical

mechanics as well. For an in-depth treatment of this theory, see the recent

monograph by E. Presutti [73].
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Fig. 2.7. Critical isotherm.

2.7 The grand canonical ensemble

Having seen the computational advantage in removing the constraint of

fixed energy, it is very natural to also remove other constraints in the same

way and to replace them by an exponential weighting factor. A popular

ensemble that is obtained in this way is the grand canonical ensemble, where

the particle number is no longer fixed, and instead a chemical potential is

introduced in the definition of the partition function. We define the grand

canonical measure on the space

Ω ≡ ∪∞
N=1P

⊗N (2.99)

as

G̃β,V,µ(dx,N) =
eµβNGβ,V,N(dx)∑∞
N=1 e

µβNZβ,V,N
(2.100)

where the denominator is called the grand canonical partition function,

Zβ,V,µ ≡
∞∑

N=1

eβµNZβ,V,N (2.101)

Clearly we will have an analogous statement to that of Theorem 2.3.1 that

will affirm that the logarithm of the grand canonical partition function is

related to a thermodynamic potential. However, this is a little tricky for

two reasons: first, we sum over N , so it is not quite clear at first how we

should pass to the thermodynamic limit. Second, we have to be careful

in noting that we keep volume fixed while we sum over N . The second

observation also provides the answer to the first problem: We would think

of the thermodynamic limit this time as being related to letting the volume

go to infinity, i.e. we will think of the volume as V = vM , where M is taken

to infinity, and of N as N = xM , where x = N/M runs from 1/M to infinity

in steps of 1/M , as N is summed over. Thus, we write



36 2 Principles of Statistical Mechanics

Zβ,vM,µ =
∞∑

x=1/M

exp
(
Mβ(µx −M−1F (β, vM,Mx))

)
(2.102)

The main contributions to the sum will come from values of x where the

exponent has a maximum. Assume that the thermodynamic limit of the

free energy exists. Then, for v and x fixed,
1

M
F (β, vM,Mx) → xf(β, v/x) (2.103)

Thus, the leading part of the exponent has a maximum when

µ =
∂

∂x
xf(β, v/x) = f(β, v/x) + p(β, v/x)v/x (2.104)

Note that this equation fixes x, and that x/v is the mean number of particles

per volume in the grand canonical ensemble. We arrive at the conclusion

that

lim
V ↑∞

1

βV
lnZβ,V,µ = p (2.105)

i.e. the thermodynamic potential associated with the grand canonical en-

semble can be thought of as the pressure as a function of the chemical

potential, the volume, and the temperature.

Exercise: Formulate a precise analogue of Theorem 2.3.1 that will yields

the assertion (2.105).

Exercise: Compute the pressure of an ideal gas in the grand canonical

ensemble and derive the ideal gas law.
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Lattice gases and spin systems

It has long been known that iron, when raised to a certain ‘critical temperature’

correspondig to dull red heat, loses its susceptibility and becomes magnetically in-

different, or, more precisely, is transformed from a ferromagnetic to a paramagnetic

body.

Magnetism, Encyclopedia Britannica, 11th edn.

Dealing with non-ideal gases brings a number of complications that are

partly due to the continuous nature of the configuration space, combined

with the need of competing interactions to account for fundamental features

of realistic gases. The desire to create models where these technical aspects

are simplified has led to the introduction of the idea of a lattice gas. The

ideal lattice gas was already encountered in Chapter 2. We now turn to the

study of interacting lattice gases.

3.1 Lattice gases

We will now proceed to introduce a lattice gas that will take into account

hard-core repulsion as well as attraction. We fix a subset V ⊂ Z
d of a d-

dimensional lattice. The hard core repulsion will be taken into account by

imposing the condition that each site of the lattice can be occupied by at

most one particle. For an allowed configuration of particles, we then define

the Hamiltonian

HV (x1, . . . , xN ) =
∑

i6=j

φ(xi, xj) (3.1)

where φ is some pair interaction. The canonical partition function is

Zβ,V,N =
1

N !

∑

x1,...,xN∈V

xi 6=xj,∀i6=j

e−βHV (x1,...,xN ) (3.2)

37
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The nice feature is that the constraint, xi 6= xj,∀i 6= j, is easily taken care

of by using a different parametrization of the state space. Namely, each

possible configuration of particles satisfying this constraint is equivalent, up

to permutation of the labels, to a function nx, x ∈ V , that takes the value

1, if a particle is at site x, and the value 0, otherwise. Moreover, the energy

of a configuration of particles corresponding to occupation numbers n can

be expressed as

H̃V (n) =
∑

x 6=y∈V

φ(x, y)nxny (3.3)

Thus, the partition function can be written as

Zβ,V,N =
∑

nx∈{0,1},x∈V∑
x∈V nx=N

e−βH̃V (n) (3.4)

This formulation still involves a constraint,
∑

x∈V nx = N , but this can be

dealt with easily by passing to the grand-canonical partition function

Zβ,V,µ =
∑

nn∈{0,1},x∈V

e−βH̃V (n)−µ
∑

x∈V nx (3.5)

This is the standard formulation of the partition function of a lattice gas.

The most popular version of it is the Ising lattice gas, where φ(x, y) is taken

as a so-called nearest-neighbour interaction:

φnn(x, y) =

{
−J, if |x− y| = 1

0, else
(3.6)

3.2 Spin systems.

In his Ph.D. thesis in 1924, Ernst Ising1 [48, 49] attempted to solve a model,

proposed by his advisor Lenz, intended to describe the statistical mechanics

of an interacting system of magnetic moments. I will not discuss the deriva-

tion of this model from quantum mechanics, but present it as a heuristic

model for magnetism. The setup of the model proceeds again from a lattice,

Z
d, and a finite subset, V ⊂ Z

d. This time, the lattice is more justifiable

than before, since it is supposed to represent the positions of the atoms in

a regular crystal. Each atom is endowed with a magnetic moment that is

quantized and can take only the two values +1 and −1, called the spin of

the atom. This spin variable at site x ∈ V is denoted by σx. The spins

are supposed to interact via an interaction potential φ̃(x, y); in addition, a

magnetic field h is present. The energy of a spin configuration is then

1 An account of the life of Ising can be found in [53] and is definitely worth reading.
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HV (σ) ≡ −
∑

x 6=y∈V

φ̃(x, y)σxσy − h
∑

x∈V

σx (3.7)

We will see that this model is mathematically equivalent to a lattice gas

model. If we make the change of variables nx = (σx + 1)/2, we can express

H̃V (n) as a function of σ,

H̃V ((σ + 1)/2) =
∑

x 6=y∈V

1

4
φ(x, y)σxσy (3.8)

+
∑

x∈V

σx

∑

y 6=x∈V

φ(x, y) +
1

4

∑

x 6=y∈V

φ̃(x, y)

We see that (up to the irrelevant constant term) this is exactly of the same

form as the Hamiltonian of the spin system. In particular, in the case of the

nearest neighbour Ising lattice gas, we get

H̃V ((σ + 1)/2) = −
∑

x,y∈V,|x−y|=1

J

4
σxσy − 2dJ

∑

x∈V

σx − J
d

2
|V | (3.9)

where we only cheated a little bit with the terms next to the boundary of

V , where the number of neighbours is not quite 2d.

Since the lattice gas partition functions can be written as partition func-

tions of the spin system, from our point of view the two settings are com-

pletely equivalent, and we can work in one or the other. We will mostly

prefer the language of lattice spin systems, which quickly will lead to a far

richer class of models.

The spin system with Hamiltonian (3.7) with the particular choice

φ̃(x, y) =

{
J, if |x− y| = 1

0, otherwise
(3.10)

is known as the Ising spin system or Ising model. This model has played a

crucial rôle in the history of statistical mechanics.

Magnetic systems have a different terminology than gases. We have al-

ready seen that the parameter that corresponds to the chemical potential

in the lattice gas is here the magnetic field, h. The extensive variable con-

jugate to it is the magnetization, M =
∑

∈V σi, which from the lattice gas

point of view corresponds to the particle number. Since magnetization times

magnetic field is an electromagnetic energy, one likes to think of h and M

as the magnetic analogues of p and V , whereas the size of the system, |V |,
is the analogue of the particle number. Therefore, one usually thinks of the

setting we have described, with V fixed, as a canonical partition function,

rather than a grand-canonical one. The logarithm of the partition function
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is called the Helmholtz free energy, which is strange, since as a function of

the intensive variable h it is more like a Gibbs free energy1. Anyway, we

will call

Fβ,h,V ≡ − 1

β
lnZβ,h,V (3.11)

the free energy of the spin system.

The Ising model represent a decisive turn in the development of statistical

mechanics in several ways. The most important one is that the model was

invented with the clear intention of understanding a phenomenon in material

science, ferromagnetism, that was very hard to understand from basic prin-

ciples. This was quite a different ambition than the justification, or possibly

derivation of thermodynamics. The second crucial turn was the fact that the

Ising model involved a considerable simplification on the level of the descrip-

tion of the basic microscopic degrees of freedom, reducing the state of an

atom to a variable taking two values ±1, and replacing all the complicated

electromagnetic (and quantum) interactions by a simple attraction between

nearest neighbours on the lattice, while still hoping to adequately reproduce

the essential features of the phenomenon that is to be understood. Today,

we would justify such modelling by a universality hypothesis, claiming that

the collective phenomena to be modelled are universal for wide classes of

models and depend only on a few parameters, such as dimensionality, global

symmetries, etc.. This point of view has proven enormously successful in

statistical mechanics, and without it, and the simple paradigmatic models

it provoked (such as the Ising model), most of the progress of the last 80

years would not have been possible. Before we turn, in the next Chapter to

the rigorous probabilistic setup of Gibbs measures for lattice spin systems,

we will look at two singular situations that were studied in the early days

of these models, and that gave rise to some confusion. They are the exact

solution of the Ising model in one dimension, and the mean field version of

the Ising model, the Curie–Weiss model of ferromagnetism.

3.3 Subadditivity and the existence of the free energy

Let us first give an instructive proof of the existence of the limit of the free

energy in the Ising model. It will be useful to note that we can express the

Hamiltonian in the equivalent form

1 R. Kotecký has pointed out to me that the reason for this terminology is given in the textbook
by E. Stanley [84]. According to him, the terminology refers only to the classical thermody-
namic variables, disregarding the magnetic ones. Then one could still think that there is a
volume apart from the number of atoms in the lattice (think, e.g., of a magnetic gas or fluid),
and what we now call volume remains a particle number.
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ĤV (σ) =
∑

x,y∈V

φ̃(x, y) (σx − σy)
2 − h

∑

x∈V

σx (3.12)

which differs from HV only by a constant. Now let V = V1 ∪ V2, where Vi

are disjoint volumes. Clearly we have that

Zβ,V =
∑

σx,x∈V1

∑

τy,y∈V2

exp (−β [HV1(σ) +HV2(τ)])

× exp


−β

∑

x∈V1

∑

y∈V2

φ̃(x, y)(σx − τy)
2


 (3.13)

If φ̃(x, y) ≥ 0, this implies that

Zβ,V ≤ Zβ,V1Zβ,V2 (3.14)

and therefore

−Fβ,V ≤ (−Fβ,V1) + (−Fβ,V2) (3.15)

The property (3.14) is called subadditivity of the sequence (−Fβ,V ). The

importance of subadditivity is that it implies convergence, through an ele-

mentary analytic fact:

Lemma 3.3.1 Let an be a real-valued sequence that satisfies, for any n,m ∈
N,

an+m ≤ an + am (3.16)

Then, limn↑∞ n−1an exists. If, moreover, n−1an is uniformly bounded from

below, then the limit is finite.

By successive iteration, the lemma has an immediate extension to arrays:

Lemma 3.3.2 Let an1,n2,...,nd
, ni ∈ N be a real-valued array that satisfies,

for any ni,mi ∈ N,

an1+m1,...,nd+md
≤ an1,...,nd

+ am1,...md
(3.17)

Then, limn↑∞(n1n2 . . . , nd)
−1an1,...,nd

exists.

If an(n1n2 . . . , nd)
−1an1,...,nd

≥ b > −∞, then the limit is finite.

Lemma 3.3.2 can be used straightforwardly to prove convergence of the

free energy over rectangular boxes:

Proposition 3.3.3 If the Gibbs free energy Fβ,V of a model satisfies the

subadditivity property (3.15), and if supσ HV (σ)/|V | ≥ C > −∞, then, for

any sequence Vn of rectangles

lim
n↑∞

|Vn|−1Fβ,Vn
= fβ (3.18)
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exists and is finite.

Obviously this proposition gives the existence of the free energy for Ising’s

model, but the range of applications of Proposition 3.3.3 is far wider, and vir-

tually covers all lattice spin systems with bounded and absolutely summable

interactions. To see this, one needs to realize that strict subadditivity is not

really needed, as error terms arising, e.g., from boundary conditions can

easily be controlled. Further details can be found in Simon’s book [80].

3.4 The one-dimensional Ising model

The thesis of E. Ising consisted in solving the one-dimensional version of the

Ising model. The result was probably a disappointment for his advisor, for

the solution failed to exhibit a phase transition, and so Ising (prematurely)

concluded that the model was inadequate to explain ferromagnetism. It will

be instructive, nonetheless, to go through this computation.

In the case d = 1, the Hamiltonian of the Ising model on a volume V =

{1, . . . , N} can be written as

HN (σ) = −J
N∑

i=1

σiσi+1 − h
N∑

i=1

σi (3.19)

Actually, there is a small problem that we need to discuss. It concerns the

spins at the sites i = 1 and i = N . While all other spins have two neighbours,

and both the terms σi−1σi and σiσi+1 occur in the sum, for these indices

one of these terms is missing. Thus, the question how to deal with these

boundary spins properly raises itself. We will see in the next section that this

is a fundamental aspect of the problem, and we will introduce the general

framework to deal with it. At the moment, we will avoid this issue in the

simplest way by considering the model on a circle, i.e. we impose σN+1 = σ1.

This is known as periodic boundary conditions. We will interpret (3.19) in

this way. The partition function of the model then reads

Zβ,h,N =
∑

σ1=±1,...,σN=±1

exp

(
βJ

N∑

i=1

σiσi+1 + βh

N∑

i=1

σi

)

=
∑

σ1=±1,...,σN=±1

N∏

i=1

exp (βJσiσi+1 + βhσi) (3.20)

Let us write, for s, s′ ∈ {−1, 1},
L(s, s′) ≡ eβJss

′+βhs (3.21)

and think of it as the entries of a 2×2 matrix L (called the transfer matrix).

Then we can write



3.4 The one-dimensional Ising model 43

Zβ,h,N =
∑

σ1=±1,...,σN=±1

L(σ1, σ2)L(σ2, σ3) . . . (3.22)

. . . L(σN−1, σN )L(σN , σ1) = trLN

But the trace of the matrix LN is simply given by

trLN = λN
1 + λN

2 (3.23)

where λ1, λ2 are the two eigenvalues of the matrix L. The computation of

the eigenvalues of a 2× 2-matrix is a trivial exercise, and one gets

λ1 = eβJ cosh(βh) +

√
e2βJ sinh2(βh) + e−2βJ (3.24)

λ2 = eβJ cosh(βh) −
√
e2βJ sinh2(βh) + e−2βJ

Since λ2/λ1 < 1, one sees easily that

lim
N↑∞

N−1Zβ,h,N = lnλ1 (3.25)

= ln

(
eβJ cosh(βh) +

√
e2βJ sinh2(βh) + e−2βJ

)

= βJ + ln

(
cosh(βh) +

√
sinh2(βh) + e−4βJ

)

that is, the free energy, as depicted in Fig. 3.4, is given by the expresion

f(β, h) = −J − β−1 ln

(
cosh(βh) +

√
sinh2(βh) + e−4βJ

)
(3.26)

We can compute the magnetization

m = −∂f

∂h
=

sinh(βh)√
sinh2(βh) + e−4βJ

(3.27)

which is a monotone and differentiable function of h, for any 0 ≤ β < ∞
(even if a plot with Mathematica will tend to look discontinuous if, e.g.,

βJ = 10, as shown in Fig. 3.2.

What this result suggests is that there is no spontaneous magnetization.

For zero external fields, the magnetization vanishes, even in the thermo-

dynamic limit. It is not difficult to arrive at the conclusion that perhaps

spontaneous magnetization is just an experimental error, and the appearance

of a phase transition is misleading. It also seems to support the following

argument, that was used against the possibility of explaining phase transi-

tions on the basis of statistical mechanics: in the Ising model, the partition

function is clearly an analytic function of all parameters. Moreover, for real

values of β and h, it is strictly positive, so also its logarithm is an analytic

function, at least real analytic. Therefore, no jump in the derivative of the
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Fig. 3.1. The free energy as a function of temperature and magnetic field.
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free energy can occur. The problem with this argument is that, in general,

it does not survive the thermodynamic limit.

In any event, Ising drew the conclusion that something like a real phase

transition, with a magnetization having a real jump-discontinuity at the

values h = 0, cannot occur in his model.

3.5 The Curie–Weiss model

Already in 1907, Weiss [91], following the discovery of the critical tem-

perature (Curie temperature), above which ferromagnetism disappears, by

Pierre Curie in 1895, had developed a theory of ferromagnetism based on a

spin system analogue of the van der Waals theory. This Curie–Weiss model

can be cast into the language of the Ising model in a very natural way. All

we need to do is to replace the nearest neighbour pair interaction of the

Ising model by another extreme choice, namely the assumption that each

spin variable interacts with each other spin variable at any site of the lattice

with exactly the same strength. In that case, the actual structure of the
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lattice becomes irrelevant, and we may simply take V = {1, . . . , N}. The

strength of the interaction should be chosen of order 1/N , to avoid the pos-

sibility that the Hamiltonian takes on values larger than O(N). Thus, the

Hamiltonian of the Curie–Weiss model is

HN (σ) = − 1

N

∑

1≤i,j≤N

σiσj − h

N∑

i=1

σi (3.28)

At this moment it is time to discuss the notion of macroscopic variables in

some more detail. So far we have seen the magnetization, m, as a thermo-

dynamic variable. It will be reasonable to define another magnetization as

a function on the configuration space: we will call

mN (σ) ≡ N−1
N∑

i=1

σi (3.29)

the empirical magnetization. Here we divided by N to have a specific

magnetization. A function of this type is called a macroscopic function,

because it depends on all spin variables, and depends on each one of them

very little (we will make these notions more rigorous in the next section).

Note that the particular structure of the Curie–Weiss model entails that

the Hamiltonian can be written as a function of this single macroscopic

function:

HN (σ) = −N

2
[mN (σ)]

2 − hNmN (σ) ≡ NΨh(mN (σ)) (3.30)

This can be considered as a defining feature of mean field models.

Digression. Instead of considering the empirical magnetization one could

study a closely related object, namely a probability distribution on the set

{−1, 1}, called the empirical spin distribution,

ρN ≡ 1

N

N∑

i=1

δσi
(3.31)

If we think of the σi as random variables distributed according to, say, the

Gibbs distribution, ρN is a random probability measure. Clearly, we have

that

mN (σ) =

∫
ρN (ds)s ≡ ρN (+1)− ρN (−1) (3.32)

so that mN determines uniquely ρN , and vice versa. This is, however, par-

ticular to the case where the spin variables take only two values. If one

considers more general models, the empirical distribution contains more in-

formation than its mean value. The proper extension of the notion of mean
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field models to that case is then to consider Hamiltonians that are functions

of the empirical distribution.

Let us now try to compute the free energy of this model. Because of the the

interaction term, this problem looks complicated at first. To overcome this

difficulty, we do what would appear unusual from our past experience: we

go from the ensemble of fixed magnetic field to that of fixed magnetization.

That is, we write

Zβ,h,N =
∑

m∈MN

eNβ(m2

2 +mh)zm,N (3.33)

where MN is the set of possible values of the magnetization, i.e.,

MN ≡ {m ∈ R : ∃σ ∈ {−1, 1}N : mN (σ) = m} (3.34)

= {−1,−1 + 2/N, . . . , 1− 2/N, 1}

and

zm,N ≡
∑

σ∈{−1,1}N

1ImN (σ)=m (3.35)

is a ‘micro-canonical partition function’. Fortunately, the computation of

this micro-canonical partition function is easy. In fact, all possible values

of m are of the form m = 1− 2k/N , where k runs from 0 to N and counts

the number of spins that have the value −1. Thus, the computation of zm,N

amounts to the most elementary combinatorial problem, the counting of the

number of subsets of size k in the set of the first N integers. Thus,

zm,N =

(
N

N(1−m)/2

)
≡ N !

[N(1−m)/2]![N(1 +m)/2]!
(3.36)

It is always useful to know the asymptotics of the logarithm of the binomial

coefficients that I give here for future reference with more precision than we

need right now. If we set, for m ∈ MN

N−1 ln zm,N = ln 2− I(m)− JN (m) (3.37)

where

I(m) =
1 +m

2
ln(1 +m) +

1−m

2
ln(1−m) (3.38)

then

JN (m) =
1

2N
ln

1−m2

4
+

lnN + ln(2π)

2N

+ O

(
N−2

(
1

1−m
+

1

1 +m

))
(3.39)

(3.39) is obtained using the asymptotic expansion for the logarithm of the

Gamma function. The function I(x) is called Cramèr’s entropy function
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and worth memorizing. Note that by its nature it is a relative entropy. The

function JN is of lesser importance, since it is very small.

Some elementary properties of I are useful to know: First, I is symmetric,

convex, and takes its unique minimum, 0, at 0. Moreover I(1) = I(−1) =

ln 2. Its derivative, I ′(m) = arcth(m), exists in (−1, 1). While I is not

uniformly Lipschitz continuous on [−1, 1], it has the following property:

Lemma 3.5.1 There exists C < ∞ such that for any interval ∆ ⊂ [−1, 1]

with |∆| < 0.1, maxx,y∈∆ |I(x)− I(y)| ≤ C|∆|| ln |∆||.
We would like to say that limN↑∞

1
N ln zm,N = ln 2 + I(m). But there is a

small problem, due to the fact that the relation (3.37) does only hold on

the N -dependent set MN . Otherwise, ln zm,N = −∞. A precise asymptotic

statement could be the following:

Lemma 3.5.2 For any m ∈ [−1, 1],

lim
ǫ↓0

lim
N↑∞

1

N
ln

∑

m∈MM :|m−m̃|<ǫ

zm,N = ln 2 + I(m̃) (3.40)

Proof. The proof is elementary from properties of zm,N and I(m) mentioned

above and is left to the reader.

In probability theory, the following formulation of Lemma 3.5.2 is known

as Cramèr’s theorem. It is the simplest so-called large deviation principle

[30]:

Lemma 3.5.3 Let A ∈ B(R) be a Borel-subset of the real line. Define a

probability measure pN by pN (A) ≡ 2−N
∑

m∈MN∩A zm,N , and let I(m) be

defined in (3.38) Then

− inf
m∈A

I(m) ≤ lim inf
N↑∞

1

N
ln pN (A) (3.41)

≤ lim sup
N↑∞

1

N
ln pN (A) ≤ − inf

m∈Ā
I(m)

Moreover, I is convex, lower-semi-continuous, Lipschitz continuous on (−1, 1),

bounded on [−1, 1], and equal to +∞ on [−1, 1]c.

Remark 3.5.1 The classical interpretation of the preceding theorem is the

following. The spin variables σi = ±1 are independent, identically distributed

binary random variables taking the values ±1 with equal probability. mN (σ)

is the normalized sum of the first N of these random variables. pN denotes

the probability distribution of the random variable mN , which is inherited

from the probability distribution of the family of random variables σi. It is

well known, by the law of large numbers, that pN will concentrate on the
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value m = 0, as N tends to ∞. A large deviation principle states in a precise

manner how small the probability will be that mN take on different values.

In fact, the probability that mN will be in a set A, that does not contain

0, will be of the order exp(−Nc(A)), and the value of c(A) is precisely the

smallest value that the function I(m) takes on the set A.

The computation of the canonical partition function is now easy:

Zβ,h,N =
∑

m∈MN

(
N

N(1−m)/2

)
exp

(
Nβ

(
m2

2
+ hm

))(
N

N(1−m)/2

)

(3.42)

and by the same type of argument which was used in the proof of Theorem

2.3.1 we get the following:

Lemma 3.5.4 For any temperature, β−1, and magnetic field, h,

lim
N↑∞

−1

βN
lnZβ,h,N = inf

m∈[0,1]

(
−m2/2 + hm− β−1(ln 2− I(m)

)

= f(β, h) (3.43)

Proof. We give the simplest proof, which, however, contains some valuable

lessons. We first prove an upper bound for Zβ,h,N :

Zβ,h,N ≤ N max
m∈MN

exp

(
Nβ
(m2

2
+ hm

))( N

N(1−m)/2

)
(3.44)

≤ N max
m∈[−1,1]

exp

(
Nβ
(m2

2
+ hm

)
+N(ln 2− I(m)− JN (m))

)

Hence

N−1 lnZβ,h,N (3.45)

≤ N−1 lnN + max
m∈[−1,1]

(
β

(
m2

2
+ hm

)
+ ln 2− I(m)− JN (m)

)

≤ ln 2 + sup
m∈[−1,1]

(
β

(
m2

2
+ hm

)
− I(m)

)
+N−1O(lnN)

so that

lim sup
N↑∞

N−1 lnZβ,h,N ≤ β sup
m∈[−1,1]

(
m2

2
+ hm− β−1I(m)

)
+ ln 2

(3.46)

This already looks good. Now all we need is a matching lower bound. It

can be found simply by using the property that the sum is bigger than its

parts:

Zβ,h,N ≥ max
m∈MN

exp

(
Nβ

(
m2

2
+ hm

))(
N

N(1−m)/2

)
(3.47)
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We see that we will be in business, up to the small problem that we need

to pass from the max over MN to the max over [−1, 1], after inserting the

bound for the binomial coefficient in terms of I(m). In fact, we get that

N−1 lnZβ,h,N ≥ ln 2 + β max
m∈MN

(
m2

2
+ hm− β−1I(m)

)
(3.48)

− O(lnN/N)

for any N . Now, we can easily check that

max
m∈MN

∣∣∣∣
(
m2

2
+ hm− β−1I(m)

)
(3.49)

− sup
m′∈[0,1],|m′−m|≤2/N

(
m2

2
+ hm− β−1I(m)

) ∣∣∣∣ ≤ C lnN/N

so that

lim inf
N↑∞

1

βN
lnZβ,h,N ≥ β−1 ln 2 + sup

m∈[−1,1]

(
m2

2
+ hm− β−1I(m)

)
(3.50)

and the assertion of the lemma follows immediately.

Remark 3.5.2 The function g(β,m) ≡ −m2/2 − β−1(ln 2 − I(m)) should

be rightfully called the Helmholtz free energy for zero magnetic field (see

above), since by our calculations,

lim
ǫ↓0

lim
N↑∞

−1

βN
ln

∑

m̃:|m̃−m|<ǫ

Z̃β,m̃,N = g(β,m) (3.51)

where

Z̃β,m̃,N =
∑

σ∈{−1,1}N

eβHN (σ)1ImN (σ)=m (3.52)

for h = 0. Thermodynamically, the function f(β, h) is then the Gibbs free

energy, and the assertion of the lemma would then be that the Helmholtz free

energy is given by this particular function, and that the Gibbs free energy

is its Legendre transform. The Helmholtz free energy is closely related to

the rate function of a large deviation principle for the distribution of the

magnetization under the Gibbs distribution. Namely, if we define the Gibbs

distribution on the space of spin configurations

µβ,h,N(σ) ≡ e−βHN (σ)

Zβ,h,N
(3.53)

and denote by p̃β,h,N(A) ≡ µβ,h,N ({mN (σ) ∈ A}) the law of mN under this

distribution, then we obtain very easily
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Fig. 3.3. The function g(β,m).

Lemma 3.5.5 Let p̃β,h,N be the law of mN (σ) under the Gibbs distribution.

Then the family of probability measures p̃β,h,N satisfies a large deviation

principle, i.e. for all Borel subsets of R,

− inf
m∈A

(g(β,m)− hm) + f(β, h) ≤ lim inf
N↑∞

1

βN
ln p̃β,h,N(A) (3.54)

≤ lim sup
N↑∞

1

βN
ln p̃β,h,N(A)

≤ − inf
m∈Ā

(g(β,m)− hm) + f(β, h)

We see that the thermodynamic interpretation of equilibrium emerges

very nicely: the equilibrium value of the magnetization, m(β, h), for a given

temperature and magnetic field, is the value of m for which the rate function

in Lemma 3.5.5 vanishes, i.e., which satisfies the equation

g(β,m(β, h))− hm(β, h) = f(β, h) (3.55)

(which is the usual thermodynamic relation between the Gibbs and the

Helmholtz free energy). By the definition of f (see (3.43)), this is the case

wheneverm(β, h) realises the infimum in (3.43). If g(β,m) is strictly convex,

this infimum is unique, and, as long as g is convex, it is the set on which
∂g(β,m)

∂m = h.

Note that, in our case, g(β,m) is not a convex function of m if β > 1, as

can be seen in Figs.s 3.3.

In fact, it has two local minima, situated at the values ±m∗
β, where m

∗
β is

defined as the largest solution of the equation

m = tanhβm (3.56)
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Moreover, the function g is symmetric, and so takes the same value at both

minima. As a consequence, the minimizer of the function g(β,m) − mh,

the magnetization as a function of the magnetic field, is not unique at the

value h = 0 (and only at this value). For h > 0, the minimizer is the

positive solution of m = tanh(β(m + h)), while for negative h it is the

negative solution. Consequently, the magnetization has a jump discontinuity

at h = 0, where it jumps by 2m∗
β.

Like in the van der Waals gas, the Curie–Weiss model exhibits a first order

phase transition, unlike the one-dimensional Ising model. But, also like in

the van der Waals gas, the basic hypothesis of thermodynamics, namely the

convexity of the free energy (here g), is violated. Ising could have argued

that the fact that the interaction in this model has infinite range (i.e. all

spins interact with the same strength), which clearly is responsible for the

non-convexity, is also responsible for the appearance of the phase transition.

Before we turn to some further investigations of the Curie–Weiss model,

let us discuss the physical implications of the non-convexity problem. The

usual argument against the unphysical nature of non-convex g goes as fol-

lows. Given g, the magnetic field (as the analogue of the pressure) should

be

h(m,β) =
∂g(β,m)

∂m
= m− β−1I ′(m) (3.57)

This isotherm is not a monotone function of the magnetization, that is,

there are regions of the magnetization where the magnetic field drops when

the magnetization increases, which looks funny. Also, it is clear that this

function is not invertible, so we could argue that we cannot compute m as a

function of the magnetic field. But from our more probabilistic point of view,

things are not so bad, after all. The equilibrium value of m(β, h) as function

of β and h is the minimizer of the function g(β,m)− hm, which is uniquely

defined, except at h = 0. The values in the interval (−m∗(β),m∗(β)) are

unphysical, i.e. for no value of the magnetic field will the system attain an

equilibrium magnetization in this interval. In fact, Maxwell’s cure to replace

the non-convex Helmholtz free energy by its convex hull also works here.

This then basically allows any value of the magnetization in that interval,

if h = 0. If one were to look more closely into the probability distribution

of mN in a lattice model in dimension d, one would, however, discover that

the intermediate values of the magnetization are considerably less probable

than the extremal ones, albeit only by a factor of order exp(−N1−1/d). So

from a thermodynamic point of view, the Curie–Weiss model is not such a

bad model after all. The main drawback appears if one wants to analyse

the behaviour of systems where the magnetization is forced by a constraint
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to lie in the forbidden interval. Real physical systems will exhibit what is

called phase separation, i.e. the system will select a sub-volume, where the

magnetization takes the value +m∗, while in the complement it will take

the value −m∗ in such a way that the total magnetization has the enforced

value. The precise details of phase separation have been understood from

the point of view of mathematical statistical mechanics only very recently,

in some models (see [10, 19, 20, 23, 47]). Mean field models are inadequate

to describe this phenomenon, due to the absence of any geometric structure

in the interaction.

More on the CW model. Our solution of the Curie–Weiss model relied

on the fact that we could solve the combinatorial problem of counting the

number of spin configurations having a given magnetization m. There is

a nice trick, called the Hubbard–Stratonovich transformation [46, 85] that

allows us to compute the Gibbs free energy directly, without having to solve

any combinatorial problem.

Recall that we want to compute

Zβ,h,N =
∑

σ∈{−1,1}N

exp
(
βNm2

N (σ)/2 + βNhmN (σ)
)

(3.58)

The difficulty in performing the sum is due to the presence of the quadratic

term in the exponent. But there is a simple identity that allows to solve this

issue, namely
1√
2π

∫
dze−z2/2+yz = ey

2/2 (3.59)

Applying this yields

Zβ,h,N =
∑

σ∈{−1,1}N

1√
2π

∫
dze−z2/2+(

√
Nβz+βhN)mN(σ) (3.60)

=
∑

σ∈{−1,1}N

√
βN

2π

∫
dz e−βNz2/2+(z+h)β

∑N
i=1 σi

=

√
N

2π

∫
dz e−Nβz2/2+N ln[2 cosh(β(z+h))]

Lemma 3.5.6 For any β, h,

lim
N↑∞

1

βN
lnZβ,h,N = − inf

z∈R

(
z2/2− β−1 ln coshβ(z + h)

)
+ β−1 ln 2 (3.61)

The proof of the lemma is very simple and will be skipped. Apparently,

the variational formula (3.61) must represent the same function as (3.43). In

particular, the minimizer is the solution of the equation x = β tanh β(x+h)

that has the same sign as h, i.e. is precisely m(β, h).
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Fig. 3.4. The function g(β,m) for values of β near the critical value 1.

Exercise: Critical behaviour in the CW model. We have seen that a

first-order phase transition appears in the Curie–Weiss model for β > βc = 1.

Analyse the behaviour of the thermodynamic functions in the vicinity of this

critical point (see Fig. 3.4.

(i) Compute the spontaneous magnetization m∗(β) as a function of β−βc
as β ↓ βc.

(ii) Compute the specific heat, c(h, T ) ≡ −T ∂2f(β,h)
∂T 2 , and its asymptotic

expansion for β > βc when h = 0.

(iii) Compute the susceptibility , χ = ∂m(β,h)
∂h , at h = 0, for β < βc and

find its leading-order behaviour in powers of βc − β.

(iv) For β = βc, compute the leading behaviour of m(βc, h) as h ↓ 0.

Exercise: Fluctuations in the CW model. We have seen that ther-

modynamic computations amount to proving large deviation principles for

thermodynamic variables. One can look at finer properties of the distribu-

tion functions of such variables. For instance, we know that the value of

the magnetization mN (σ) will sharply concentrate on its equilibrium value

m(β, h).

Consider the family of random variables XN ≡
√
N(mN (σ) − m(β, h))

distributed according to the Gibbs measure µβ,h,N .

(i) If β < 1, show that XN converges in distribution to a centred Gaussian

random variable and compute its variance.

(ii) Do the same for β < 1 and h > 0.



54 3 Lattice gases and spin systems

(iii) Compute the behaviour of the variance of XN for h = 0 as β ↑ 1, and

for β = 1 as h ↓ 0.

(iv) For β = 1 and h = 0, how should one rescale the magnetization to

obtain a random variable with a non-trivial distribution? Compute the

distribution of the properly rescaled variable as well as you can.

(v) If β > 1 and h = 0, try to formulate a limit theorem for the fluctua-

tions of the magnetization.

The Curie–Weiss model has proven to be an easily solvable model that

exhibits a first-order (and as shown in the exercise, a second-order) phase

transition. However, the question whether long-range order can appear in

short-range model remains open.

The two-dimensional Ising model. In 1944, Onsager [66] produced an

exact solution of the two-dimensional Ising model with zero magnetic field.

From this solution, the existence of a phase transition could be concluded,

and even the precise asymptotics near the critical temperature could be in-

ferred. The two dimensional Ising model has been of paramount importance

in the theory of critical phenomena, resp. second-order phase transitions, be-

cause its exact solution provided an example that showed that, in general,

critical exponents are different from those found in the mean field model.

Later, starting with the work of Lieb on the ice-model [59] and Baxter [6]

on the eight-vertex model, it was found that the Ising model is a special

case of a much wider class of two-dimensional models that permit exact so-

lutions. Exact solubility of non-mean field models is, however, a particular,

and somwhat accidental property, and we will not discuss this topic in this

book. Note that more recently the two-dimensional Ising model has also

played an important rôle as the first model where a rigorous treatment of

the phase separation problem could be given [23].
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The Gibbsian formalism for lattice spin systems

The word ‘statistic’ is derived from the Latin status, which, in the middle ages, had

come to mean ‘state’ in the political sense. ‘Statistics’, therefore, originally denoted

inquiries into the condition of a state.

Statistics, Encyclopedia Britannica, 11th edn.

We will now turn to the investigation of the rigorous probabilistic formalism

of the statistical mechanics of lattice spin systems, or lattice gases. The

literature on this subject is well developed and the interested student can

find in-depth material for further reading in [38, 80, 82, 71, 72], and the

classical monographs by Ruelle [76, 77]. A nice short introduction with a

particular aim in view is also given in the first sections of the paper [89].

4.1 Spin systems and Gibbs measures

As mentioned in the last chapter, the idea of the spin system was born at

about 1920 in an attempt to understand the phenomenon of ferromagnetism.

At that time it was understood that ferromagnetism should be due to the

alignment of the elementary magnetic moments (‘spins’) of the (iron) atoms,

that persists even after an external field is turned off. The phenomenon is

temperature dependent: if one heats the material, the coherent alignment

is lost. It was understood that the magnetic moments should exert an ‘at-

tractive’ (‘ferromagnetic’) interaction among each others, which, however,

is of short range. The question was then, how such a short range interac-

tion could sustain the observed very long range coherent behaviour of the

material, and why such an effect should depend on the temperature.

Recall that the Ising model can be defined via a Hamiltonian, H, that

assigns to each configuration, σ ≡ {σx}x∈Zd , the energy

55
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H(σ) ≡ −
∑

x,y∈Zd

‖x−y‖1=1

σxσy − h
∑

x∈Zd

σx (4.1)

In the last section we only considered systems that were confined to some

finite volume Λ, whose size would be taken to infinity when taking the

thermodynamic limit. We will now take a different point of view. In fact,

our aim will be to define systems, or more precisely Gibbs measures, directly

in the infinite volume. This touches on an important fundamental issue of

statistical mechanics, which we will have occasion to discuss repeatedly. It

is tempting to formulate this as an (informal) axiom:

A system composed of a very large number of degrees of freedom can be

well approximated by an infinite system.

We will have to see how to interpret this statement and what its limitations

are later. I would ask you to accept this for the moment and take it as an

excuse for the otherwise seemingly unreasonable struggle we will enter to

describe infinite systems.

The basic axiom of statistical mechanics is, as we have seen, that the

(equilibrium) properties of a system shall be described by specifying a prob-

ability measure on the space of configurations, in our case {−1,+1}Zd
. From

what we have learned so far, the appropriate candidate for such a measure

should be the Gibbs measure, as it is parametrized only by intensive vari-

ables. We will therefore accept as another axiom that the proper measure

to choose is the Gibbs measure, which formally is given by

µβ(dσ) =
1

Zβ
e−βH(σ)ρ(dσ) (4.2)

where Zβ is a normalizing constant and ρ is the uniform measure on the

configuration space. Again, this expression makes no sense for the infinite

system, but would make perfect sense if we replaced Z
d by a finite set, Λ,

everywhere1.

We will see how to obtain a sensible version of (4.2) in the infinite-volume

setting. We start with the ‘a-priori’ measure, ρ, that is supposed to describe

the non-interacting system. In finite volumes, the uniform measure on the

finite space {−1,+1}Λ is the product Bernoulli measure

1 Here we are touching a crucial point. The problem with a finite-volume description is that it
appears to be unable to reflect the very phenomenon we want to describe, namely the existence
of several phases, i.e. the persistence of magnetized states after the magnetic field has been
turned off. The argument was brought forward that a single formula could not possibly describe
different physical states at the same time. The question is indeed quite intricate and a full
understanding will require to consider the dynamical aspects of the problem. On the level of
the equilibrium theory, the issue is however, as we will see, solved precisely and elegantly by
the adoption of the infinite-volume axiom.
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ρΛ(σΛ = sΛ) =
∏

x∈Λ

ρx(σx = sx) (4.3)

where ρx(σx = +1) = ρx(σx = −1) = 1/2. There is a standard construction

to extend this to infinite volume. First, we turn S ≡ {−1,+1}Zd
into a

measure space by equipping it with the product topology of the discrete

topology on {−1,+1}. The corresponding sigma-algebra, F , is then just

the product sigma-algebra. The measure ρ is then defined by specifying

that, for all cylinder events AΛ (i.e. events that for some finite set Λ ⊂ Z
d

depend only on the values of the variables σx with x ∈ Λ),

ρ(AΛ) = ρΛ(AΛ) (4.4)

with ρΛ defined in (4.3). In this way we have set up an a-priori probability

space, (S,F , ρ), describing a system of non-interacting spins. It is worth

noting that this set-up is not totally innocent and reflects a certain physical

attitude towards our problem. Namely, the choice to consider the system

as truly infinite and to use the product topology implies that we consider

the individual degrees of freedom, or finite collections of them, as the main

physical observables, which can be measured. While this appears natural, it

should not be forgotten that this has important implications in the interpre-

tation of the infinite-volume results as asymptotic results for large systems,

which may not in all cases be the most desirable ones1.

To continue the interpretation of (4.2), one might be tempted to specify

also the measure µβ by prescribing the finite dimensional marginals, e.g., by

demanding that µβ,Λ(dσΛ) = Z−1
β,Λ exp(−βHΛ(σΛ))ρΛ(dσΛ), with HΛ(σΛ)

the restriction of (4.1) to the finite volume Λ. The problem with this, how-

ever, are the compatibility conditions that are required for such a set of

measures to specify a measure on (S,F); Kolmogorov’s theorem would re-

quire that for Λ ⊂ Λ′, µβ,Λ(AΛ) = µβ,Λ′(AΛ). While in the case of the

non-interacting system, this is trivially checked, this will not hold in the

interacting case.

Exercise: Prove this fact. Check explicitly that the compatibility condi-

tions do not hold in the case when Λ,Λ′ consist of 1 resp. 2 points!.

Since there appears no other feasible way how one could specify marginal

measures, we need a better idea. Actually, there are not too many choices:

if we cannot fix marginals, we can try to fix conditional distributions. This

1 For instance, it might be that one is interested in collections of variables that are composed
of enormously many local variables. It may then be that an appropriate description requires
intermediate divergent (‘mesoscopic’) scales in between the ‘macroscopic’ volume and the mi-
croscopic degrees of freedom. This would require a slightly different approach to the problem.
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seems quite natural today from the point of view of the theory of Markov

processes, but was only realized in 1968-69 by Roland L. Dobrushin [28, 29]

(and shortly after that by O. Lanford and D. Ruelle [55]), and is now seen as

one the cornerstones of the foundation of modern mathematical statistical

mechanics. To understand this construction, we have to return to (4.1)

and give a new interpretation to this formal expression. The Hamiltonian

should measure the energy of a configuration; this makes no sense in infinite

volume, but what we could ask, is, what is the energy of an infinite-volume

configuration within a finite-volume Λ? A natural definition of this quantity

is

HΛ(σ) ≡ −
∑

x∨y∈Λ
‖x−y‖1=1

σxσy − h
∑

x∈Λ

σx (4.5)

Note that this expresssion, in contrast to the formula (4.1), contains the en-

ergy corresponding to the interaction between spins in Λ with those outside

Λ (which here involves only spins in the boundary of Λ. The notion of finite-

volume restriction given by (4.5) has the nice feature that it is compatible

under iteration: if Λ′ ⊃ Λ, then

(HΛ′)Λ (σ) = HΛ(σ) (4.6)

Equation (4.5) will furnish our standard interpretation of a Hamiltonian

function H; we will always consider it as a function, H : (Λ, σ) → HΛ(σ)

from the pairs consisting of finite subsets of Zd and configurations in S to

the real numbers. This allows to define, for any fixed configuration of spins

η ∈ S and finite subset Λ ⊂ Z
d, a probability measure

µη
Λ(dσΛ) =

1

Zη
β,Λ

e−βHΛ((σΛ,ηΛc ))ρΛ(dσΛ) (4.7)

Equation (4.7) defines a much richer class of measures than just the marginals.

The idea is that these should be the family of conditional probabilities of

some measure, µβ, defined on the infinite-volume space. The point is that

they satisfy automatically the compatibility conditions required for condi-

tional probabilities (see below), and so have a chance to be conditional prob-

abilities of some infinite-volume measure. Dobrushin’s idea was to start from

this observation to define the notion of the infinite-volume Gibbs measure,

i.e. as the proper definition for the formal expression (4.2):

A probability measure µβ on (S,F) is a Gibbs measure for the Hamilto-

nian H and inverse temperature β if and only if its conditional distributions

(given the configurations in the complement of any finite set Λ) are given by

(4.7).

Two immediate questions pose themselves:
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(i) Does such a measure exist?

(ii) If it exists, is it uniquely specified?

We will see soon that there is a large class of systems for which existence of

such a measure can be shown. That means that Dobrushin’s formalism is

meaningful and defines a rich theory. The second question provides all the

charm of the Gibbsian formalism: There are situations, when the infinite-

volume measure is not uniquely specified, and when several infinite-volume

measures exist for the same Hamiltonian and the same temperature1. This

observation will furnish the explanation for the strikingly different behaviour

of a ferromagnet at high and low temperatures: if d ≥ 2, the temperature

is low, and h = 0, there will be measures describing a state with positive

magnetization and one with negative magnetization, and the system can be

in either of them; at high temperatures, however, there is always a unique

Gibbs measure.

Before we continue the investigation of these two questions in the Ising

model, we will provide a more general and more formal set-up of the pre-

ceding discussion.

4.2 Regular interactions

4.2.1 Some topological background

We will now describe the general framework of spin systems with so-called

regular interactions. Our setting will always be lattice systems and our

lattice will always be Zd. Λ will always denote a finite subset of Zd. Spins will

take values in a set S0 that will always be a complete separable metric space.

In most of our examples, it will just be the set {−1, 1}. We equip S0 with

its sigma-algebra generated by the open sets in the metric topology (resp.

the discrete topology in the case when S0 is a discrete set), F0, to obtain

a measure space (S0,F0). To complete the description of the single-spin

space, we add a (probability) measure ρ0, the so-called a-priori distribution

of the spin. This gives a single-site (probability) space (S0,F0, ρ0).

As discussed in the previous paragraph, we first want to furnish the setting

for infinitely many non-interacting spins. To do this, we consider the infinite-

product space

S ≡ SZ
d

0 (4.8)

1 This could be phrased as saying that the one (meaningless) formula (4.2) defines several (mean-
ingful) Gibbs measures. This resolves the (serious) dispute in the first half of the twentieth
century on the question whether statistical mechanics could possibly account for phase transi-
tions. See the very amusing citations in the prologue of Ueltschi’s Thesis [86]
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which we turn into a complete separable space by equipping it with the

product topology. This is done by saying that the open sets are generated

by the cylinder sets Bǫ,Λ(σ), defined as

Bǫ,Λ(σ) ≡
{
σ′ ∈ S

∣∣max
x∈Λ

|σx − σ′
x| < ǫ

}
(4.9)

where σ ∈ S, Λ ⊂ Z
d, and ǫ ∈ R+. The product topology of a metric space

is metrizable, and S is a complete separable metric space if S0 is. The Borel

sigma-algebra of S, F , is the product sigma-algebra

F = FZ
d

0 (4.10)

An important fact is Tychonov’s theorem [38]:

Theorem 4.2.1 If S0 is a compact then the space S equipped with the prod-

uct topology is compact.

A particularly important consequence in the case when S0 is a compact,

separable metric space is that the same holds true for the product space,

and hence any sequence in that space has a convergent subsequence.

Exercise: Consider the space {−1, 1}N. Show by direct construction that

any sequence σ(n) ∈ {−1, 1}N has a convergent subsequence. (Hint: Show

that {−1, 1}N can be given the structure of a partially ordered set, and use

this order to construct a bounded, increasing subsequence.)

We will use the notation SΛ ≡ SΛ
0 and FΛ ≡ FΛ

0 , for the finite-volume

configuration space and the sigma-algebra of local events. Note that we

identify FΛ ⊂ F with the sub-sigma-algebra of events depending only on

the co-ordinates σx, x ∈ Λ. We will call an event that is measurable with

respect to FΛ, for some finite Λ, a local, or a cylinder, event. A sequence of

volumes, Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn ⊂ · · · ⊂ Z
d, with the property that, for any

finite Λ′ ⊂ Z
d, there exists n, such that Λ′ ⊂ Λn, will be called an increasing

and absorbing sequence. The corresponding family of sigma-algebras, FΛn ,

forms a filtration of the sigma-algebra F . Similarly, we write SΛc ≡ SZd\Λ
0

and FΛc ≡ FZd\Λ
0 . A special rôle will be played later by the so-called ‘tail

sigma-algebra’, F t ≡ ∩Λ⊂ZdFΛc . The events in F t will be called tail-events

or non-local events.

We will refer to various spaces of (real valued) functions on S in the

sequel. In the physical terminology, such functions are sometimes referred

to as observables. The largest space one usually considers is B(S,F), the

space of bounded, measurable functions. (A function, f , from a measure

space, S, into the real numbers is called measurable if, for any Borel set,

B ⊂ B(R), the set A ≡ {σ : f(σ) ∈ B} is contained in F).
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Correspondingly, we write B(S,FΛ) for bounded functions measurable

with respect to FΛ, i.e. depending only on the values of the spins in Λ.

Functions that are in some B(S,FΛ) are called local or cylinder functions;

we denote their space by

Bloc (S) ≡ ∪Λ⊂ZdB(S,FΛ) (4.11)

A slight enlargement of the space of local functions are the so-called quasi-

local functions, Bql (S); this is the closure of the set of local functions under

uniform convergence. Quasi-local functions are characterized by the prop-

erty that

lim
Λ↑Zd

sup
σ,σ′∈S

σΛ=σ′
Λ

|f(σ)− f(σ′)| = 0 (4.12)

We also introduce the spaces of continuous, local continuous, and quasi-

local continuous functions, C(S), Cloc (S,F) = C(S)∩Bloc (S,F), and Cql =

C(S) ∩ Bql (S,F).

The reader should be warned that in general (i.e. under the hypothesis

that S0 is just a complete separable metric space), neither are all quasi-local

functions continuous, nor all continuous functions quasi-local (see, e.g., [89]

for nice examples). However, under stronger hypotheses on S0, the different

spaces acquire relations:

Lemma 4.2.2 (i) If S0 is compact, then C(S) = Cql (S) ⊂ Bql (S).
(ii) If S0 is discrete , then Bql (S) = Cql (S) ⊂ C(S).
(iii) If S0 is finite, then C(S) = Bql (S) = Cql (S).

Proof. Left as an exercise.

Remark 4.2.1 Since we are mostly interested in finite spin spaces, quasi-

locality will be the essential aspect of continuity in the product topology.

We now turn to the space M1(S,F) of probability measures on (S,F)

and its topological structure. There are several possibilities to equip this

space with a topology. The most convenient and commonly used one is that

of weak convergence with respect to continuous functions. This topology is

generated by the open balls

Bf,ǫ(µ) ≡
{
µ′ ∈ M1(S,F)

∣∣|µ(f)− µ(f ′)| < ǫ
}

(4.13)

where f ∈ C(S), ǫ ∈ R+, µ ∈ M1(S,F). The main advantage of this topol-

ogy is that it turns M1(S,F) into a complete separable metric space, and

moreover, if S0 is compact, then M1(S,F) is compact. 1

1 Note that Georgii’s book [38] uses a stronger topology than the weak topology on measures.
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4.2.2 Local specifications and Gibbs measures

We now introduce a very large class of Hamiltonians for which the Gibbsian

theory can be set up. We first define the concept of an interaction.

Definition 4.2.1 An interaction is a family Φ ≡ {ΦA}A⊂Zd where ΦA ∈
B(S,FA). If all ΦA ∈ C(S,FA), then the interaction is called continuous.

An interaction is called regular if, for all x ∈ Z
d, there exists a constant

c, such that
∑

A∋x

‖ΦA‖∞ ≤ c < ∞ (4.14)

Remark 4.2.2 What we call ‘regular’ interaction is called ‘absolutely summable’

interaction in Georgii’s book [38]. In most of the standard literature one

finds the stronger condition that

‖|Φ|‖ ≡ sup
x∈Zd

∑

A∋x

‖ΦA‖∞ < ∞ (4.15)

With this definition the set of all regular interactions equipped with the

norm ‖| · |‖ forms a Banach space, B0, while the weaker condition we use

makes the set of regular interactions only into a Fréchet space [38]. In the

case of translation-invariant interactions, both conditions coincide. How-

ever, in the case of random systems, the stronger condition (4.15) would

introduce some unnatural restrictions on the class of admissible interactions.

Remark 4.2.3 Unbounded interactions occur naturally in two settings: in

the case of non-compact state space (e.g., ‘Gaussian models’, interface mod-

els) or as so called ‘hard-core’ exclusions to describe models in which certain

configurations are forbidden (e.g., so called ‘subshifts of finite type’). While

some of such models can be treated quite well, they require special work and

we will not discuss them here.

From an interaction one constructs a Hamiltonian by setting, for all finite

volumes Λ ⊂ Z
d,

HΛ(σ) ≡ −
∑

A∩Λ6=∅
ΦA(σ) (4.16)

If Φ is in B0, HΛ is guaranteed to satisfy the bound

‖HΛ‖∞ ≤ C|Λ| (4.17)

There, balls are defined with quasilocal, but not necessary continuous functions. In this topol-
ogy the space of probability measures over S is not necessarily compact. However, if S0 is a
finite space, the two notions coincide.
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for some C < ∞. Moreover, it is easy to check that HΛ is a quasi-local

function, and, if Φ is continuous, a continuous quasi-local function, for any

finite Λ.

The Hamiltonians defined in this way share most of the nice properties

of the Ising Hamiltonian defined in Section 4.1, and we can proceed to use

them to construct Gibbs measures. We begin with the definition of local

specifications:

Definition 4.2.2 A local specification is a family of probability kernels,{
µ
(·)
Λ,β

}
Λ⊂Zd

, such that:

(i) For all Λ and all A ∈ F , µ
(·)
Λ,β(A) is a FΛc -measurable function.

(ii) For any η ∈ S, µη
Λ,β is a probability measure on (S,F).

(iii) For any pair of volumes, Λ,Λ′, with Λ ⊂ Λ′, and any measurable

function, f , ∫
µη
Λ′,β(dσ

′)µ
(ηΛ′c ,σ′

Λ′ )

Λ,β (dσ)f((σΛ, σ
′
Λ′\Λ, ηΛ′c)) (4.18)

=

∫
µη
Λ′,β(dσ

′)f((σ′
Λ′ , ηΛ′c))

where we use the notation (σΛ, ηΛc) to denote the configuration that equals

σx if x ∈ Λ, and ηx, if x ∈ Λc.

The most important point is that local specifications satisfy compatibility

conditions analogous to conditional expectations. Given a regular interac-

tion, we can now construct local specifications for the Gibbs measures to

come.

Lemma 4.2.3 If Φ is a regular interaction, then the formula∫
µη
Λ,β(dσ)f(σ) ≡

∫
ρΛ(dσΛ)

e−βHΛ((σΛ,ηΛc ))

Zη
Λ,β

f((σΛ, ηΛc)) (4.19)

defines a local specification, called the Gibbs specification for the interaction

Φ at inverse temperature β.

Proof. Left as an exercise. The crucial point is that we have (4.6).

We will use a shorthand notation for relations like (4.18) and symbolize

this equation by

µ
(·)
Λ′,βµ

(·)
Λ,β = µ

(·)
Λ′,β (4.20)

As we mentioned, the notion of local specifications is closely related to

that of conditional expectations. Since this is fundamental in what follows,

let us recall some standard definitions (see, e.g., [21]).
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Definition 4.2.3 Let (S,F , µ) be a probability space, f a F-measurable

function (a ‘random variable’), and G ⊂ F a sub-sigma-algebra. We call a

function g ≡ µ(f |G) a conditional expectation of f , given G, iff
(i) g is G-measurable, and

(ii) for any G-measurable function, h, it holds that

µ(hg) = µ(hf) (4.21)

In our setting, if F is a product sigma algebra, and G = FΛ, then this

means that µ(f |FΛ) is obtained from f by integrating over all variables σx
with x 6∈ Λ while keeping the variables σx with x ∈ Λ fixed.

Conditional expectations are defined uniquely up to sets of measure zero;

i.e., any G-measurable function, g′, for which g′ = µ(f |G), µ-almost surely,

g′ is a version of the conditional expectation.

Conditional expectations satisfy a compatibility condition.

Lemma 4.2.4 Let F ⊃ G′ ⊃ G, and f a F-measurable function. Let g =

µ(f |G) and g′ = µ(f |G′) be conditional expectations of f w.r.t. G and G′,

respectively. Then

µ(g′|G) = g, µ− a.s. (4.22)

Proof. We just have to show that µ(g′|G) is the conditional expectation of

f with respect to G. Obviously it is G-measurable. It remains to show that

the second defining property holds. But, if h is G-measurable,

µ(hµ(g′|G)) = µ(hg′) = µ(hµ(f |G′)) = µ(hf) (4.23)

which was to be shown.

It is natural to associate to conditional expectations the notion of a

regular conditional probability distribution.

Definition 4.2.4 Given two sigma algebras F ⊃ G, a regular conditional

distribution is a function µη
G such that

(i) for each η ∈ S, µη
G is a probability measure on F , and

(ii) for each A ∈ F , µη
G(A) is a G-measurable function such that for almost

all η, µη
G(A) = µ(1IA|G)(η).

The existence of regular conditional distributions is ensured in all sit-

uations we will be concerned with, in particular whenever the underlying

probability spaces are Polish spaces (see, e.g., [21, 8]).

We see that local specifications are ‘conditional expectations waiting for a

measure’; thus nothing is more natural than to define infinite-volume Gibbs

measures as follows:
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Definition 4.2.5 Let
{
µ
(·)
Λ,β

}
be a local specification. A measure, µβ, is

called compatible with this local specification if and only if, for all Λ ⊂ Z
d

and all f ∈ B(S,F),

µβ

(
f
∣∣FΛc

)
= µ

(·)
Λ,β(f), µβ − a.s. (4.24)

A measure µβ, which is compatible with the local Gibbs specification for

the regular interaction Φ and a priori measure ρ at inverse temperature β,

is called a Gibbs measure corresponding to Φ and ρ at inverse temperature

β.

Remark 4.2.4 We see that the local specifications of a Gibbs measure pro-

vide an explicit version of their regular conditional distributions, as they

exist for all η. One might be content with a weaker notion of Gibbs states,

where local specifications are defined only for almost all η ∈ S. The as-

sociated concepts of weaker notions of Gibbs measures are currently under

active debate, see, e.g., [61, 27].

Theorem 4.2.5 A probability measure µβ is a Gibbs measure for Φ, ρ, β if

and only if, for all Λ ⊂ Z
d,

µβµ
(·)
Λ,β = µβ (4.25)

Proof. Obviously, (4.25) holds if µ
(·)
Λ,β(f) is the conditional probability

µβ(f |FΛc), by definition. We only have to show the converse. But the local

specifications are by construction FΛc-measurable, so that property (i) of

Definition 4.2.3 is satisfied. To show that property (ii) holds, apply (4.25)

with a function f ′(η) = f(η)h(ηΛc) where h is FΛc -measurable. This shows

that µ
(·)
Λ,β(f) satisfies the second requirement of a conditional expectation of

f . This proves the theorem.

The equations (4.25) are called the DLR equations after Dobrushin, Lan-

ford and Ruelle, to whom this construction is due. We have now achieved

a rigorous definition of what the symbolic expression (4.2) is supposed to

mean. Of course, this should be completed by an observation saying that

such Gibbs measures exist in typical situations. This will turn out to be

easy.

Theorem 4.2.6 Let Φ be a continuous regular interaction and let µ
(·)
Λ,β be

the corresponding Gibbs specification. Let Λn be an increasing and absorbing

sequence of finite volumes. If, for some η ∈ S, the sequence of measures,

µη
Λn,β

, converges weakly to some probability measure, ν, then ν is a Gibbs

measure w.r.t. to Φ, ρ, β.
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Proof. Let f be a continuous function. By hypothesis, we have that

µη
Λn,β

(f) → ν(f), as n ↑ ∞ (4.26)

On the other hand, for all Λn ⊃ Λ,

µη
Λn,β

µ
(·)
Λ,β(f) = µη

Λn,β
(f) (4.27)

We would like to assert that µη
Λn,β

µ
(·)
Λ,β(f) converges to νµ

(·)
Λ,β(f), since this

would immediately imply that ν satisfies the DLR equations (4.25) and

hence is a Gibbs measure. To be able to make this assertion, we would

need to know that µ
(·)
Λ,β(f) is a continuous function. The property of a

specification to map continuous functions to continuous functions is called

the Feller property.

Lemma 4.2.7 The local specifications of a continuous regular interaction

have the Feller property.

Proof. We must show that, if ηn → η, then µηn
Λ,β(f) → µη

Λ,β(f). A simple

consideration shows that, since f is continuous, this property follows, if

HΛ(σΛ, ηn,Λc) → HΛ(σΛ, ηΛc) (4.28)

But HΛ is by assumption a uniformly convergent sum of continuous func-

tions, so it is itself continuous. Then (4.28) is immediate.

The proof of Theorem 4.2.6 is now obvious.

Exercise Local specifications have even nicer properties than Feller. In

particular, they are ‘quasi-local’, in the sense that they map local functions

into quasi-local functions. This is expanded on in [89]. Prove the quasi-

locality of local specifications and fill in the details in the proof of Lemma

4.2.7.

The constructive criterion of Theorem 4.2.6 gives us now a cheap existence

result:

Corollary 4.2.8 Assume that S0 is compact and Φ is regular and continu-

ous. Then there exists at least one Gibbs measure for any 0 ≤ β < ∞.

Proof. By Tychonov’s theorem S is compact. The set of probability mea-

sures on a compact space is compact with respect to the weak topology, and

so any sequence µη
Λn,β

must have convergent subsequences. Any one of them

provides a Gibbs measure, by Theorem 4.2.6.

Remark 4.2.5 There are models with non-compact state space for which

no Gibbs measure exists.
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Theorem 4.2.6 is of absolutely central importance in the theory of Gibbs

measures, since it gives a way how to construct infinite-volume Gibbs mea-

sures. Physicists would view this even as the definition of infinite-volume

Gibbs measures (and we will have to return to this attitude later when we

discuss mean field models). The procedure of taking increasing sequences of

finite-volume measures is called the passing to the ‘thermodynamic limit’.

It is instructive to compare the physical ‘approximation’ statement con-

tained in the DLR equations and in the weak limit construction. The DLR

equations can be interpreted in the sense that, if we consider a physical fi-

nite system, when we apply ‘boundary conditions’ 1 and weigh these with

the infinite-volume measure µβ, then the finite-volume measure within Λ

will look exactly like the infinite-volume measure µΛ,β. On the other hand,

the constructive criterion of Theorem 4.2.5 means that there are suitable

configurations, η, and suitable volumes, Λ, such that, if we fix boundary

conditions η, the finite-volume measure looks, for large Λ, very much like an

infinite-volume Gibbs state ν. It is experimentally not very feasible to apply

boundary conditions weighted according to some Gibbs measure, while the

second alternative seems a bit more realistic. But here difficulties will arise

if the dependence on the boundary conditions and on the volumes is too

dramatic. Such situations will arise in disordered systems.

Let us note that there is a different approach that characterizes Gibbs

measures in terms of a variational principle. Such characterizations always

carry a philosophical appeal as they appear to justify the particular choice

of Gibbs measures as principal objects of interest. Excellent references are

again [38] or [80], but also [50], and the recent lecture notes by Ch. Pfis-

ter [68]. Although several important notions linking statistical mechanics,

thermodynamics, and the theory of large deviations arise in this context, we

will not pursue this theme here.

4.3 Structure of Gibbs measures; phase transitions

In the previous section we established the concept of infinite-volume Gibbs

measures and established the existence of such measures for a large class

of systems. The next natural question is to understand the circumstances

under which for a given interaction and a given temperature there exists a

unique Gibbs measure, and when this is not the case. We have already seen

that the possibility that the local specifications might be compatible with

1 In the formal discussion we fixed configurations in the entire complement of Λ. Of course for
models with short range interactions, like the Ising model, the inside of a volume Λ depends
only on the configuration on a layer of width one around Λ. Thus it is physically feasible to
emulate the effect of the exterior of Λ by just boundary conditions.
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several Gibbs measures is precisely providing for the possibility to describe

phase transitions in this framework, and therefore this will be the case that

we shall be most interested in. Nonetheless, it is important to understand

under what conditions one must expect uniqueness. For this reason we start

our discussion with some results on uniqueness conditions.

4.3.1 Dobrushin’s uniqueness criterion

In a certain sense one should expect that, as a rule, a local specification is

compatible only with one Gibbs measure. But there are specific interactions

(or specific values of the parameters of an interaction), where this rule is vi-

olated1. However, there are general conditions that preclude this degenerate

situation; vaguely, these conditions say that ‘βH is small’; in this case one

can see the Gibbs measure as a weak perturbation of the a priori measure

ρ. There are several ways of establishing such conditions. Possibly the most

elegant one is due to Dobrushin, which we will present here. Our treatment

follows closely that given in Simon’s book [80], where the interested reader

may find more material.

Let us introduce the total variation distance of two measures, ν, µ, by

‖ν − µ‖ ≡ 2 sup
A∈F

|ν(A) − µ(A)| (4.29)

Theorem 4.3.1 Let µ
(·)
Λ,β be a local specification satisfying the Feller prop-

erty. Set, for x, y ∈ Z
d,

ρx,y ≡ 1

2
sup
η,η′

∀z 6=xηz=η′
z

∥∥∥µη
y,β − µη′

y,β

∥∥∥ (4.30)

If supy∈Zd

∑
x∈Zd ρx,y < 1, then the local specification is compatible with at

most one Gibbs measure.

Proof. For a continuous function, f , we define its variation at x

δx(f) = sup
η,η′

∀z 6=xηz=η′
z

|f(η)− f(η′)| (4.31)

and the total variation

∆(f) ≡
∑

x∈Zd

δx(f) (4.32)

We define the set of functions of finite total variation
1 The so-called Gibbs phase rule states that coexistence of several Gibbs measures should occur

only on submanifolds of lower dimension in the space of interactions. A precise mathematical
justification, or even formulation, of this rule is still missing (see [78] for a recent detailed
discussion).
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T ≡ {f ∈ C(S)|∆(f) < ∞}. It is easy to check that this set is a dense

subset of C(S). The idea of the proof is:

i) Show that ∆ is a semi-norm and ∆(f) = 0 ⇒ f = const..

ii) Construct a contraction T with respect to ∆, such that any solution

of the DLR equations is T-invariant.

Then it holds that, for any solution of the DLR equations, µ(f) = µ(Tf) =

µ(Tnf) → c(f), independent of which one we choose. But the value on

continuous functions determines µ, so all solutions of the DLR equations

are identical.

To simplify notation we drop the reference to β in the course of the proof.

Let us first establish (ii). To construct the map T, let x1, x2, . . . , xn, . . . be

an enumeration of all points in Z
d (this implies that xn must disappear to

infinity as n ↑ ∞). Set

Tf ≡ lim
n↑∞

µ(·)
x1

. . . µ(·)
xn
(f) (4.33)

For any continuous function, the limit in (4.33) exists in norm. (Exercise:

Prove this fact. Hint: Check the convergence first on local functions!) This

implies that T maps continuous functions to continuous functions, which is

a crucial property we will use.

It is obvious by construction that, if µ satisfies the DLR equation w.r.t.

the specification µ
(·)
Λ , then

µ(Tf) = µ(f) (4.34)

It remains to show that T is a contraction w.r.t. ∆, if

sup
y∈Zd

∑

x∈Zd

ρx,y ≤ α < 1 (4.35)

In fact, we will show that, under this hypothesis, ∆(Tf) ≤ α∆(f), for any

continuous function f . We first look at δx(µy(f)).

Lemma 4.3.2 Let f ∈ T. Then

(i)

δx(µx(f)) = 0 (4.36)

(ii) For and y 6= x,

δx(µy(f)) ≤ δx(f) + ρx,yδy(f) (4.37)

Proof. Obviously, δx(µx(f)) = 0, since µx(f) does not depend on ηx. Now

let x 6= y. Then
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δx(µy(f)) ≡ sup
η,η′

∀z 6=xηz=η′
z

∣∣∣µη
y(f)− µη′

y (f)
∣∣∣ (4.38)

= sup
η,η′

∀z 6=xηz=η′
z

∣∣∣
∫

f(σy, ηyc)µη
y(dσy)−

∫
f(σy, η

′
yc)µη

y(dσy)

+

∫
f(σy, η

′
yc)
(
µη
y(dσy)− µη′

y (dσy)
)∣∣∣

≤ sup
η,η′

∀z 6=xηz=η′
z

∫ ∣∣f(σy , ηyc)− f(σy, η
′
yc)
∣∣µη

y(dσy)

+ sup
η,η′

∀z 6=xηz=η′
z

∣∣∣∣
∫

f(σy, η
′
yc)
(
µη
y(dσy)− µη′

y (dσy)
)∣∣∣∣

Clearly,

sup
η,η′

∀z 6=xηz=η′
z

∫ ∣∣f(σy, ηyc)− f(σy, η
′
yc)
∣∣µη

y(dσy) ≤ δx(f) (4.39)

To treat the second term, we take advantage of the fact that any constant

integrated against the difference of the two probability measures gives zero,

so that

∣∣∣∣
∫

f(σy, η
′
yc)
(
µη
y(dσy)− µη′

y (dσy)
)∣∣∣∣ (4.40)

=

∫ ∣∣∣∣
(
f(σy, η

′
yc)− inf

τy
f(τy, ηyc)

)(
µη
y(dσy)− µη′

y (dσy)
)∣∣∣∣

≤ sup
η,η′

∀z 6=yηz=η′
z

|f(η)− f(η′)| sup
η,η′

∀z 6=xηz=η′
z

sup
A∈F

∣∣∣µη
y(A)− µη′

y (A)
∣∣∣

=
1

2

∥∥∥µη
y − µη′

y

∥∥∥ δy(f)

Combining the two estimates gives (ii).

Lemma 4.3.3 Under the hypothesis supy∈Zd

∑
x∈Zd ρx,y ≤ α, for all n ∈ N,

∆(µ(·)
x1

. . . µ(·)
xn
f) ≤ α

n∑

i=1

δxi
(f) +

∑

j≥n+1

δxj
(f) (4.41)

Proof. By induction. For n = 0, (4.41) is just the definition of ∆. Assume

that (4.41) holds for n. Then,
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∆(µ(·)
x1

. . . µ(·)
xn
µ(·)
xn+1

f) ≤ α

n∑

i=1

δxi
(µ(·)

xn+1
f) (4.42)

+
∑

j≥n+1

δxj
(µ(·)

xn+1
f)

≤ α

n∑

i=1

[
δxi

(f) + ρxi,xn+1δxn+1(f)
]

+
∑

j≥n+2

[
δxj

(f) + ρxj ,xn+1δxn+1(f)
]

= α

n∑

i=1

δxi
(f) +

∞∑

i=1

ρxi,xn+1δxn+1(f) +
∑

j≥n+2

δxj
(f)

≤ α

n+1∑

i=1

δxi
(f) +

∑

j≥n+2

δxj
(f)

so that (4.37) holds for n + 1. Note that the fact that δxn+1(µ
(·)
xn+1f) = 0

was used crucially: it allowed us to omit the term j = n + 1 in the second

sum. This proves the Lemma.

Passing to the limit n ↑ ∞ yields the desired estimate

∆(Tf) ≤ α∆(f) (4.43)

It remains to be proven that ∆(f) = 0 implies that f = const. We will

show that ∆(f) ≥ sup(f)− inf(f). Now, since f is continuous, for any ǫ > 0

there exists a finite Λ and configurations, ω+, ω−, with ω+
Λc = ω−

Λc , such that

sup(f) ≤ f(ω+) + ǫ, (4.44)

inf(f) ≥ f(ω−)− ǫ

But, using a simple telescopic expansion,

f(ω+)− f(ω−) ≤
∑

x∈Λ

δx(f) ≤ ∆(f) (4.45)

Thus, sup(f) − inf(f) ≤ ∆(f) + 2ǫ, for all ǫ, which implies the claimed

bound. This concludes the proof of the theorem.

For Gibbs specifications with respect to regular interactions, the unique-

ness criterion in Dobrushin’s theorem becomes

sup
x∈Zd

∑

A∋x

(|A| − 1)‖ΦA(σ)‖∞ < β−1 (4.46)

Thus it applies if the temperature β−1 is sufficiently ‘high’.

If we apply this criterion formally in the Curie-Weiss model, we get the
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correct conditions β < 1 for uniqueness. This can be turned in a pre-

cise argument by considering so-called Kac interactions, where Φx,y(σ) =

γdφ((γ(x − y))σxσy, and φ(u) is a non-negative, rapidly decaying function,

normalized such that
∫
dduφ(u) = 1. In this case, Dobrushin’s criterion

again gives β < 1, and it can be shown that the condition is optimal in the

limit γ ↓ 0 if d ≥ 1).

Exercise: Compute the bound on the temperature for which Dobrushin’s

criterion applies in the Ising model (4.1).

The techniques of the Dobrushin uniqueness theorem can be pushed fur-

ther to get more information about the unique Gibbs measure; in particular

it allows to prove decay of correlations. Since this is not of immediate con-

cern for us, we will not go into it. The interested reader is referred to the

very clear exposition in Simon’s book [80].

4.3.2 The Peierls argument

Having established a condition for uniqueness, it is natural to seek situations

where uniqueness does not hold. As we mentioned earlier, this possibility

was disbelieved for a long time and the solid establishment of the fact that

such situations occur in reasonable models like the Ising model was one of

the triumphs of statistical mechanics.

Contrary to the very general uniqueness criterion, situations with coex-

isting Gibbs measures are much more evasive and require a case-by-case

study. There exist a number of tools to investigate this problem in many

situations, the most powerful being what is called the Pirogov–Sinai theory

[69, 70], but, even in its most recent developments, it is far from being able

to give a reasonably complete answer for a class of interactions as large as,

e.g., the regular interactions1. We will discuss this theory briefly in Chapter

5.

The basis of most methods to prove the existence of multiple Gibbs states

is the Peierls argument. We will explain this in the context it was originally

derived, the Ising model, and discuss extensions later.

The basic intuition for the large β (low temperature) behaviour of the

Ising model is that the Gibbs measure should in this case strongly favour

configurations with minimal H. If h 6= 0, one sees that there is a unique

configuration, σx = sign (h), that minimizes H, whereas for h = 0 there

are two degenerate minima, σx ≡ +1 and σx ≡ −1. It is a natural idea

to characterize a configuration by its deviations from an optimal one. This

1 Of course it would be unreasonable to expect such a theory in any general form to exist.
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leads to the concept of the contour. We denote by < xy > an edge of the

lattice Z
d and by < xy >∗ the corresponding dual plaquette, i.e. the unique

d− 1 dimensional facet that cuts the edge in the middle. We set

Γ(σ) ≡
{
< xy >∗ ∣∣σxσy = −1

}
(4.47)

Γ(σ) forms a surface in R
d. The following properties are immediate from

the definition:

Lemma 4.3.4 Let Γ be the surface defined above, and let ∂Γ denote its

d− 2-dimensional boundary.

(i) ∂Γ(σ) = ∅ for all σ ∈ S. Note that Γ(σ) may have unbounded con-

nected components.

(ii) Let Γ be a surface in the dual lattice such that ∂Γ = ∅. Then there are

exactly two configurations, σ and −σ, such that Γ(σ) = Γ(−σ) = Γ.

Any Γ can be decomposed into its connected components, γi, called con-

tours. We write γi ∈ Γ if γi is a connected component of Γ. Any contour,

γi, satisfies ∂γi = ∅. That is, each contour is either a finite, closed or an

infinite, unbounded surface. We denote by int γ the volume enclosed by γ,

and we write |γ| for the number of plaquettes in γ.

The following theorem goes back to Peierls [67]. Its rigorous proof is due

to Dobrushin [24] and Griffiths [41].

Theorem 4.3.5 Let µβ be a Gibbs measure for the Ising model (4.1) with

h = 0 and ρ the symmetric product measure defined in (4.3). Assume that

d ≥ 2. Then, there is βd < ∞, such that for all β > βd

µβ

[
∃γ∈Γ(σ):0∈int γ

]
<

1

2
(4.48)

The proof of this theorem is almost immediate from the following

Lemma 4.3.6 Let µβ be a Gibbs measure for the Ising model, with h = 0.

Let γ be a finite contour. Then

µβ [γ ∈ Γ(σ)] ≤ 2e−2β|γ| (4.49)

Proof. We present the proof as an application of the DLR construction.

Recall that γ is finite and thus closed. We will denote by γin and γout the

layer of sites in Z
d adjacent to γ in the interior, resp. the exterior of γ, and

call them the interior and exterior boundaries of the contour (see Fig. 4.1).

Apparently we have

µβ [γ ⊂ Γ(σ)] ≡ µβ

[
σγout = +1, σγin = −1

]
(4.50)

+ µβ

[
σγout = −1, σγin = +1

]
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plus region

minus
region

Fig. 4.1. A contour (solid line) and its interior and exterior boundary.

The DLR equations give

µβ

[
σγout = +1, σγin = −1

]
= µβ [σγout = +1]µ+1

intγ,β[σγin = −1] (4.51)

But

µ+1
int γ,β[σγin = −1] (4.52)

=
Eσint (γ)\γin

ρ(σγin = −1)e
−βHint (γ)

(σint (γ)\γin ,−1
γin ,+1γout)

Eσ
γin

Eσint (γ)\γin
e
−βHint (γ)

(σint (γ)\γin ,σ
γin ,+1γout )

=
e−β|γ|Z(−1)

int (γ)\γinρ(σγin = −1)

Eσ
γin

eβ
∑

x∈γin,y∈γout σyZ
σγin

int (γ)\γin

≤ e−2β|γ|Z
(−1)
int (γ)\γin

Z
(+1)

int (γ)\γin

= e−2β|γ|

In the last line we used the symmetry of HΛ under the global change σx →
−σx to replace the ratio of the two partition functions with spin-flip related

boundary conditions by one. If h 6= 0, this would not have been possible.

The second term in (4.50) is treated in the same way. Thus (4.49) follows.

Proof. (of Theorem 4.3.5). The proof of the Theorem follows from the

trivial estimate

µβ

[
∃γ∈Γ(σ):0∈int γ

]
≤

∑

γ: 0∈int γ
µβ [γ ∈ Γ(σ)] (4.53)

and (roughly) counting the number of contours of area k that enclose the

origin. Let



4.3 Structure of Gibbs measures 75

#{γ : 0 ∈ intγ, |γ| = k} ≡ C(d, k) (4.54)

It is a simple exercise to show that C(2, k) ≤ k3k. Obviously, any path γ

of length k can be constructed as follows: choose a starting point within

the square of side-length k centered at the origin. Then build up the path

stepwise, noting that there are at most three possible moves at each step.

Finally, note that each closed path constructed in this way is counted k

times, because each of the points it visits can be considered the starting

point. Not taking into account that the path has to be closed gives imme-

diately the estimate above. This argument can be improved, and extended

to any dimension; in this way, Ruelle [76], obtained that for any d ≥ 2,

C(d, k) ≤ 3k. In high dimension, this has been improved by Lebowitz and

Mazel [58] to C(d, k) ≤ exp(k64 ln d/d).

Thus, using Ruelle’s bound,

µβ

[
∃γ∈Γ(σ):0∈intγ

]
≤

∞∑

k=2d

e−k(2β−ln 3) (4.55)

so choosing β a little larger than 1
2 ln 3 we get the claimed estimate.

Notice that Theorem 4.3.5 does not imply that there are no infinite con-

tours with positive probability.

Theorem 4.3.5 brings us very close to showing the existence of at least two

Gibbs states. Intuitively, it implies that, with probability greater than 1/2,

the spin at the origin has the same sign as ‘the spins at infinity’ which in turn

could be plus one or minus one. Most importantly, the spin at the origin

is correlated to those at infinity, establishing the existence of long-range

correlation.

Theorem 4.3.7 Consider the Ising model for parameters where the conclu-

sion of Theorem 4.3.5 hold. Then there exist (at least) two extremal Gibbs

measures µ+
β and µ−

β satisfying µ+(σ0) = −µ−(σ0) > 0.

Proof. Let Λn ↑ Z
d be a sequence of volumes such that the sequence

of local specifications µ+
β,Λn

converges to a Gibbs measure µ+
β , where +

stands for the constant configuration ηx ≡ +1, ∀x ∈ Z
d. Then for any n,

µ+
β,Λn

(σ0 = −1) ≤ µ+
β,Λn

(∃γ : 0 ∈ intγ) < 1
2 , uniformly in n, as the proof of

Theorem 4.3.5 applies unchanged to µ+
β,Λn

. On the other hand, 1Iσ0=−1 is a

local function, so

µ+
β (σ0 = −1) ≤ lim

n↑∞
µ+
β,Λn

(
∃γ∈Γ(σ) : 0 ∈ int γ

)
<

1

2
(4.56)
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which implies the theorem.

On a qualitative level, we have now solved Ising’s problem: The Ising

model in dimension two and more has a unique Gibbs state with decaying

correlations at high temperatures, while at low temperature there are at

least two extremal ones, which exhibit spontaneous magnetization. Thus,

the phenomenon of a phase transition in ferromagnets is reproduced by this

simple system with short range interaction.

I have said earlier that the Peierls argument is the basis of most proofs

of the existence of multiple Gibbs states. This is true in the sense that

whenever one wants to prove such a fact, one will want to introduce some

notion of contours that characterize a locally unlikely configuration; one

will then want to conclude that ‘typical’ configurations do no contain large

regions where configurations are atypical, and finally one will want to use

that there are several choices for configurations not containing large unde-

sirable regions. What is lacking then is an argument showing that these

‘good’ regions are equally likely; on a more technical level, this corresponds

to being able to pass from the one-but-last line in (4.52) to the last one. In

the Ising model we were helped by the spin flip symmetry of the problem.

This should be considered accidental, as should be the fact that the ratio of

the two partition functions appearing in (4.51) is equal to one. In fact, they

are equal, because the parameter h was chosen equal to zero. In a situation

without symmetry, one should expect that there will be some value of h (or

other parameters of the model), for which the ratio of the partition function

is close enough to one, for all γ. This is a subtle issue and at the heart

of the Pirogov–Sinai theory [69, 70, 92, 93]. Most methods to analyze such

problems in detail rely on perturbative methods that in statistical mechan-

ics go by the name of cluster expansions. Chapter 5 will be devoted to such

methods.

Having seen that the non-uniqueness of Gibbs states does in fact occur,

we are motivated to investigate the structure of the set of Gibbs states more

closely.

By the characterization of Gibbs measures through the DLR equations

it is obvious that, if µβ, µ
′
β are any two Gibbs measures for the same local

specification, their convex combinations, pµβ +(1− p)µ′
β, p ∈ [0, 1], are also

Gibbs measures. Thus, the set of Gibbs measures for a local specification

forms a closed convex set. One calls the extremal points of this set extremal

Gibbs measures or pure states1.

1 The name pure state is sometimes reserved to extremal translation-invariant Gibbs measures.
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The following gives an important characterization of extremal Gibbs mea-

sures.

Proposition 4.3.8 A Gibbs measure, µβ, is extremal if and only if it is

trivial on the tail sigma-field, F t, i.e. if, for all A ∈ F t, µβ(A) ∈ {0, 1}.
To prove this proposition, we need two important observations:

The first states that a Gibbs measure is characterized by its value on the

tail sigma-field.

Proposition 4.3.9 Let µβ and νβ be two Gibbs measures for the same spec-

ification. If, for all A ∈ F t, νβ(A) = µβ(A), then νβ = µβ.

Proof. Again we use the DLR equations. Let f be any local function. Since,

for any Λ,

µβ(f) = µβ

(
µ
(·)
β,Λ(f)

)
(4.57)

νβ(f) = νβ

(
µ
(·)
β,Λ(f)

)

the lemma follows if limΛ↑Zd µ
(·)
β,Λ(f) is measurable with respect to F t. But,

by definition, µ
(·)
β,Λ(f) is measurable with respect to FΛc , and so limΛ↑Zd µ

(·)
β,Λ(f)

is measurable with respect to ∩Λ↑ZdFΛc , i.e. F t.

The second observation is

Lemma 4.3.10 Let µ be a Gibbs measure, and A ∈ F t with µ(A) > 0.

The the conditioned measure, µ(·|A), is also a Gibbs measure for the same

specification.

Proof. We again consider a local function f . Then

µ(f |A) ≡ µ(f1IA)

µ(A)
=

µµ
(·)
Λ (f1IA)

µ(A)
=

µ1IAµ
(·)
Λ (f)

µ(A)

= µ(µ
(·)
Λ (f)|A) (4.58)

for any Λ; so, µ(·|A) satisfies the DLR equations.

Proof. (of Proposition 4.3.8): Assume that µ is trivial on the tail field and

µ = pµ′ + (1− p)µ′′, for p ∈ (0, 1). Then, for any A ∈ F t, by Lemma 4.3.9,

pµ′(A) + (1− p)µ′′(A) ∈ {0, 1} (4.59)

But this can only hold if µ′(A) = µ′′(A) ∈ {0, 1}, and so µ′ = µ′′.

To prove the converse, assume that µ is not trivial on the tail field. Then

there exists A ∈ F t with µ(A) = p ∈ (0, 1). So, by Lemma 4.3.10,
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µ = pµ(·|A) + (1 − p)µ(·|Ac) (4.60)

and, by Lemma 4.3.10, µ(·|A) and µ(·|Ac) are Gibbs measures, so µ is not

extremal. This concludes the proof of the proposition.

Tail field triviality is equivalent to a certain uniform decay of correlations,

which is a common alternative characterization of extremal Gibbs measures:

Corollary 4.3.11 A Gibbs measure µ is trivial on the tail sigma-field if

and only if, for all A ∈ F ,

lim
Λ↑Zd

sup
B∈FΛc

|µ(A ∪ B)− µ(A)µ(B)| = 0 (4.61)

4.3.3 The FKG inequalities and monotonicity

The Peierls’ argument gave us the possibility of proving the existence of more

than one Gibbs measure in the Ising model. Still, even this argument is not

constructive in the sense that it allows us to exhibit particular sequences

of finite volume measures that will actually converge to different extremal

Gibbs states. Of course it is a natural guess that this should be the case if

we take, for instance, a sequence of increasing cubes, and choose as bound-

ary conditions the configurations ηx ≡ +1 and ηx ≡ −1, for all x ∈ Z
d,

respectively. Strangely enough, this is not that easy to prove and requires

the help of so called correlation inequalities, which in turn rely strongly on

specific properties of the model at hand. The FKG inequalities, named after

Fortuin, Kasteleyn, and Ginibre [33] are amongst the most useful ones. We

will briefly discuss them and some of their applications. For more material,

see [22].

Definition 4.3.1 Let the single-spin space S be a linearly ordered set.

We say that a probability measure, µ, on SΛ, for a finite Λ ⊂ Z
d sat-

isfies the FKG inequalities or is positively correlated, if, for all bounded,

FΛ-measurable functions, f, g, that are non-decreasing with respect to the

partial order on SΛ induced by the order on S, it holds that
µ(fg) ≥ µ(f)µ(g) (4.62)

Remark 4.3.1 The assertion (4.62) is trivial in the case when the under-

lying probability space is a completely ordered set, e.g., if Λ is a single point

and S0 is a subset of R. In that case one just observes that

µ(fg)− µ(f)µ(g) (4.63)

=
1

2

∫
µ(dσ)

∫
µ(dτ) (f(σ)− f(τ)) (g(σ)− g(τ)) ≥ 0
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where the last inequality follows since, if both f and g are increasing, then,

whenever σ and τ are comparable, the two factors in the integral have the

same sign. But on a completely ordered space, this is always the case.

Theorem 4.3.12 [33] Assume that the cardinality of S0 is 2, and consider

a ferromagnetic pair interaction. Then any finite-volume Gibbs measure for

this interaction satisfies the FKG inequalities.

Proof. We will give a proof following Battle and Rosen [5] as given in Ellis

[30] for ferromagnetic Ising models with Hamiltonian

HΛ(σ) = −
∑

x∨y∈Λ

Jx,yσxσy −
∑

x∈Λ

hxσx (4.64)

where all Jx,y ≥ 0 and supx
∑

y∈Zx Jx,y < ∞. It will be convenient to

consider the local specifications, µ
(η)
β,Λ, as functions of real-valued variables

ηx, x ∈ Λc, rather than only {−1,+1}-valued variables. The proof then

proceeds by induction over the size of the volume Λ. Note first that if

|Λ| = 1, the assertion

µη
β,{x}(fg) ≥ µη

β,{x}(f)µ
η
β,{x}(g) (4.65)

holds trivially, as we just remarked. Assume that the assertion holds for

Λ ⊂ Z
d. Take any y ∈ Λc and set Λ′ = Λ ∪ {y}. We want to show that

the assertion follows for any µη
β,Λ′ , and any two non-decreasing, bounded

and FΛ′-measurable functions f, g. Notice first that, by the compatibility of

local specifications,

µη
β,Λ′(fg) =

∑

ηy=±1

µη
β,Λ′(σy = ηy)

(
µη
β,Λ(fg)

)
(4.66)

≥
∑

ηy=±1

µη
β,Λ′(σy = ηy)

(
µη
β,Λ(f)

)(
µη
β,Λ(g)

)

where we used the induction hypothesis. Since the sum over ηy satisfies

FKG trivially, we only need to show that µη
β,Λ(f) is a monotone function

of the variable ηy if f is monotone. Suppressing all variables except ηy in

the notation, this task reduces to showing that µ+1
β,Λ(f(+1) ≥ µ−1

β,Λ(f(−1)).

Since f(−1) ≤ f(+1), we may as well show the stronger

µ+1
β,Λ(f(+1)) ≥ µ−1

β,Λ(f(+1)) (4.67)

Recalling that ηy may be considered as a real variable, (4.67) follows in turn

from
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d

dηy
µ
ηy

β,Λ(f(+1)) = µ
ηy

β,Λ

(
f(+1)

∑

z∈Λ

Jzyσy

)
(4.68)

− µ
ηy

β,Λ

(
∑

z∈Λ

Jzyσy

)
µ
ηy

β,Λ (f(+1)) ≥ 0

where the first equality follows from explicit differentiation, and the second

inequality holds, because
∑

z∈Λ Jzyσy is a non-decreasing function since all

Jxy are positive. This concludes the argument.

We will now show how the FKG inequalities can be used to prove inter-

esting facts about the Gibbs measures.

Lemma 4.3.13 Let µη
β,Λ be local specifications for a Gibbs measure that

satisfies the FKG inequalities. Denote by + the spin configuration ηx =

+1,∀x∈Zd. Then

(i) For any Λ ⊂ Z
d, any η ∈ S, and any increasing function f : SΛ → R,

µ+
β,Λ(f) ≥ µη

β,Λ(f) (4.69)

(ii) For any Λ2 ⊃ Λ1, and any increasing function f : SΛ1 → R,

µ+
β,Λ2

(f) ≤ µ+
β,Λ1

(f) (4.70)

Proof. For the proof we only consider the case where S0 = {−1, 1}. We

first prove (i). Let x ∈ Λc, and consider ηx as an element of [−1, 1]. We will

show that µη
β,Λ(f) is increasing in ηx. If this is true, (4.69) is immediate.

Now compute
∂

∂ηx
µη
β,Λ(f) =

∑

y∈Λ

βJxy

(
µη
β,Λ(σyf)− µη

β,Λ(σy)µ
η
β,Λ(f)

)
(4.71)

Since all Jxy are positive, and since σy is an increasing function, by the FKG

inequalities, the right-hand side of (4.71) is non-negative and (i) is proven.

To prove (ii), consider µ+
β,Λ2

(1I+1Λ2\Λ1
f). By FKG,

µ+
β,Λ2

(1I+1Λ2\Λ1
f) ≥ µ+

β,Λ2
(1I+1Λ2\Λ1

)µ+
β,Λ2

(f) (4.72)

= exp


β

∑

x,y∈Λc
1

x∨y∈Λ2\Λ1

Jxy − β
∑

x∈Λ2\Λ1

hx




Z+
β,Λ1

Z+
β,Λ2

µ+
β,Λ2

(f)

where the equality uses the DLR equations. On the other hand, applying

the DLR equations directly to the left-hand side of (4.72), we get
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µ+
β,Λ2

(1I+1Λ2\Λ1
f) (4.73)

= µ+
β,Λ1

(f) exp


β

∑

x,y∈Λc
1

x∨y∈Λ2\Λ1

Jxy − β
∑

x∈Λ2\Λ1

hx




Z+
β,Λ1

Z+
β,Λ2

and combining both observations we have (ii).

An immediate consequence of this lemma is

Corollary 4.3.14 Under the hypothesis of Lemma 4.3.13,

(i) For any increasing and absorbing sequence of volumes, Λn ⊂ Z
d, the

limit

lim
n↑∞

µ+
β,Λn

≡ µ+
β (4.74)

exists and is independent of the particular sequence.

(ii) The Gibbs measure µ+
β is extremal.

(iii) Similarly, the limit

lim
n↑∞

µ−
β,Λn

≡ µ−
β (4.75)

exists, is independent of the sequence Λn and is an extremal Gibbs

measure.

(iv) For all Gibbs measures for the same interaction and temperature, and

any increasing, bounded, continuous function, f ,

µ−
β (f) ≤ µβ(f) ≤ µ+

β (f) (4.76)

Proof. Note that compactness and monotonicity (4.70) imply that, for all in-

creasing, bounded, continuous functions, for any sequence, Λn, of increasing

and absorbing sequences, the limit µ+
β,Λn

(f) exists. Let Λn, Λ
′
n be two such

sequences. Since both sequences are absorbing, it follows that there exist in-

finite sub-sequences, nk and n′
k, such that, for all k ∈ N, Λnk

⊂ Λ′
n′
k
⊂ Λnk+1

.

But this implies that

lim
n↑∞

µ+
β,Λn

(f) = lim
k↑∞

µ+
β,Λnk

(f) (4.77)

≥ lim
k↑∞

µ+
β,Λ′

nk

(f) = lim
n↑∞

µ+
β,Λ′

n
(f)

and

lim
n↑∞

µ+
β,Λn

(f) = lim
k↑∞

µ+
β,Λnk+1

(f) (4.78)

≤ lim
k↑∞

µ+
β,Λ′

nk

(f) = lim
n↑∞

µ+
β,Λ′

n
(f)
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and so

lim
n↑∞

µ+
β,Λn

(f) = lim
n↑∞

µ+
β,Λ′

n
(f) (4.79)

Thus, all possible limit points of µ+
β,Λ coincide on the set of increasing,

bounded, continuous functions. But then, by standard approximation ar-

guments, the limits coincide on all bounded continuous functions, which

implies that the limiting measures exist and are independent of the sub-

sequences chosen. This proves (i). To prove (ii), assume that µ+
β is not

extremal. Then, there exist two distinct Gibbs measures, µ and ν, such that

µ+
β = αµβ + (1− α)νβ , with α > 0. In particular, for f increasing,

µ+
β (f) = αµβ(f) + (1 − α)νβ(f) (4.80)

Now, by (4.69) and the DLR equations, for any local increasing function f ,

for all Λ so large that f is FΛ-measurable, for any Gibbs measure νβ,

νβ(f) = νβ
(
µ·
β,Λ(f)

)
≤ µ+

β,Λ(f) (4.81)

Since µ+
β,Λ converges to µ+

β , this implies that

νβ(f) ≤ µ+
β (f) (4.82)

Thus, (4.80) can only hold, if both µβ(f) and νβ(f) are equal to µ+
β (f). But

then, by the same argument as before, we conclude that µβ = νβ = µ+
β ,

contradicting the assumption that µβ and νβ are different. This proves (ii).

(iii) is obvious by repeating all arguments with decreasing functions, which

also yields the complementary version of (4.82), which implies (iv).

As a final result we will show that, in the presence of FKG inequalities,

the uniqueness of the Gibbs state can be tied to a so-called order parameter.

If µ is a Gibbs measure, we set

mµ ≡ lim
Λ↑∞

1

|Λ|
∑

x∈Λ

µ(σx) (4.83)

provided the limit exists. We will also use the notation m±
β = mµ±

β .

Proposition 4.3.15 Consider a translation-invariant system for which the

FKG inequalities hold. Then the two measures µ+
β and µ−

β coincide if and

only if m+
β = m−

β .

This result is due to Lebowitz and Martin-Löf [56] and Ruelle [75]. We give

a proof in the Ising case following Preston [71]. It is based on the following

simple lemma:
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Lemma 4.3.16 Consider a model with Ising spins for which the FKG in-

equalities hold. Then for any finite sets A,B ⊂ Λ,

µ+
β (σA∪B = +1)− µ−

β (σA∪B = +1) (4.84)

≤ µ+
β (σA = +1)− µ−

β (σA = +1) + µ+
β (σB = +1)− µ−

β (σB = +1)

(where σA = +1 is shorthand for ∀x∈Aσx = +1).

Proof. Notice the set-equality

1IσA=+1∧σB=+1 = 1IσA=+1 + 1IσB=+1 − 1IσA=+1∨σB=+1 (4.85)

This implies that

µ+
β (σA∪B = +1)− µ−

β (σA∪B = +1) (4.86)

= µ+
β (σA = +1)− µ−

β (σA = +1) + µ+
β (σB = +1)− µ−

β (σB = +1)

+ µ−
β (σA = +1 ∨ σB = +1)− µ+

β (σA = +1 ∨ σB = +1)

But {σA = +1 ∨ σB = +1} is an increasing event, and so, by (4.76),

µ−
β (σA = +1 ∨ σB = +1)− µ+

β (σA = +1 ∨ σB = +1) ≤ 0 (4.87)

This implies the assertion of the lemma.

In the Ising model, all local functions can expressed in terms of the indi-

cator functions 1IσA=+1, for finite A ⊂ Λ. By repeated application of Lemma

4.3.16, we get

0 ≤ µ+
β (σA = +1)− µ−

β (σA = +1) ≤
∑

x∈A

µ+
β (σx = +1)− µ−

β (σx = +1) (4.88)

Therefore, if, for all x, µ+
β (σx = +1) = µ−

β (σx = +1), it follows indeed that

µ+
β = µ−

β . This concludes the proof of Proposition 4.3.15.

The (macroscopic) functionsmµ are called order parameters, because their

values allow to decide (in this model) on the uniqueness, respectively co-

existence, of phases. One can generalize this notion to other models, and

one may set up a general theory that is able to produce interesting ab-

stract results (see [38]). Recall that after all, extremal Gibbs measures are

characterized by their values on the tail-sigma-field, i.e. by their values

on macroscopic functions. The general philosophy would thus be to iden-

tify a (hopefully) finite set of macroscopic functions, whose values suffice

to characterize all possible Gibbs states of the system. We will not enter

this subject here, but will have occasion to return to the notion of order

parameters in our discussion of disordered systems.
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Remark 4.3.2 One would tend to believe that in the Ising model, the

Gibbs measures µ±
β should be the only extremal Gibbs states. However, this

turns out to be true only in dimension d ≤ 2, as was proven by Aizenman [1]

and Higushi [45] (see also [39] for a simplified proof). In dimension d ≥ 3,

it is only true that these two states exhaust the translation-invariant ex-

tremal Gibbs states. This was first proven for low enough temperatures by

Gallavotti and Miracle-Sole [36], and only very recently by Bodineau for all

β 6= βc [9]. Dobrushin [25] (see also van Beijeren [88]) showed that in d ≥ 3,

for low enough temperatures, there exist further non translation-invariant

states (called Dobrushin states), that describe states with an interface sepa-

rating two half-spaces where spins are predominantly positive, respectively

negative, in the corresponding regions. They can be constructed with mixed

boundary conditions (e.g., ηx = +1, x3 ≥ 0, ηx = −1, x3 < 0). The full

classification of extremal states in d ≥ 3 is not known.



5

Cluster expansions

Derrière la série de Fourier, d’autres séries analogues sont entrées dans la domaine

de l’analyse; elles y sont entrées par la même porte; elles ont été imaginées en vue

des applications1.

Henri Poincaré, La valeur de la science.

Most computational methods in statistical mechanics rely upon pertur-

bation theory around situations that are well understood. The simplest one

is, as always, the ideal gas. Expanding around the ideal gas is known as

high-temperature or weak-coupling expansions. The other type of expansions

concern the situation when the Gibbs measure concentrates near a single

ground-state configuration. Such expansions are known as low-temperature

expansions. Technically, in both cases, they involve a reformulation of the

model in terms of what is called a polymer model. We begin with the high-

temperature case, which is both simpler and less model-dependent than the

low-temperature case, and show how a polymer model is derived.

5.1 High-temperature expansions

We place ourselves in the context of regular interactions, and we assume that

β will be small. In this situation, we can expect that our Gibbs measure

should behave like a product measure. To analyse such a situation, we will

always study the local specifications, establishing that they depend only

weakly on boundary conditions. The first, and in a sense generic step,

consists in computing the partition function,

1 Approximately: After the Fourier series, other series have entered the domain of analysis; they
entered by the same door; they have been imagined in view of applications.

85



86 5 Cluster expansions

Fig. 5.1. A compatible collection of polymers.

Zη
Λ,β =

∫
dρΛ(σΛ) exp


β

∑

A∩Λ6=∅
ΦA(σΛ, ηΛc)


 (5.1)

The basic idea of the high-temperature expansion is to use the trivial formula

exp


β

∑

A∩Λ6=∅
ΦA(σΛ, ηΛc)


 =

∏

A∩Λ6=∅
exp (βΦA(σΛ, ηΛc)) (5.2)

=
∏

A∩Λ6=∅
(1 + exp (βΦA(σΛ, ηΛc)− 1))

to think of eβΦA(σΛ,ηΛc ) − 1 as being small, and consequently to expand the

product over the A’s into a sum
∏

A∩Λ6=∅

(
1 + eβΦA(σΛ,ηΛc ) − 1

)
=
∑

G∈GΛ

∏

A∈G

(
eβΦA(σΛ,ηΛc ) − 1

)
(5.3)

where GΛ is the set of all subsets of the collection of all finite sets, A ⊂ Z
d,

that intersect Λ (without repetition). Of course, in concrete examples, this

set can be reduced to those sets A for which ΦA 6= 0. The elements of the

set GΛ will be called polymers.

Example: In the case of the Ising model with zero magnetic field, the only

relevant sets A are pairs of nearest neighbour bonds < x, y >. The sum is

then over all collections of subsets built from such bonds. These are nicely

interpreted as graphs on the lattice. In this case, the collection of possible

polymers intersecting Λ is finite.
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Definition 5.1.1 If G = (A1, . . . , An) is a collection of sets, we call G =

∪n
i=1Ai the support of G. We say that a polymer G ⊂ GΛ is connected if

it cannot be decomposed into two sub-collections, whose support is non-

intersecting, i.e., if, for any decomposition G = (g, g′), g ∩ g′ 6= ∅. Two

connected polymers are called non-intersecting, if their supports have empty

intersection.

Remark 5.1.1 Note that in this definition the constituent sets, A, that

make polymers, are considered connected.

Lemma 5.1.1 Any polymer, G ∈ Λ, can be uniquely decomposed into a

collection of mutually non-intersecting connected polymers, g1, . . . , gk, such

that G = ∪k
i=1gi.

Proof. Any G ∈ GΛ is of the form G = (A1, . . . , An), where Ai are subsets of

Z
d that intersect Λ. If G is connected, we are done and G = g. Otherwise,

we may pick A1 and look for the largest subset (A1 = Ai1 , . . . , Ail) that is

connected. Call this connected polymer g1. Now all other subsets Aj ∈ G do

not intersect any of these Aik . Then pick any of the remaining Aj and form

the maximal connected set g2, etc.. In the end we obtain a decomposition

G = (g1, . . . , gk) into connected polymers such that, for any gi, gj in the

collection, the supports of gi and gj do not intersect. We have to verify

that this decomposition is unique. Thus assume that there are two different

ways to decompose G, say G = (g1 . . . , gk) and G = (g′1 . . . , g
′
k′). If these

decompositions are different, there must be one g′, say g′1, such that g′1 is

not equal to any of the gi; in particular, there must be a gi 6= g′1 such that

g′1 ∩ gi 6= ∅. Still there must be B that is an element of the symmetric

difference gi∆g′1 ≡ (gi ∪ g′1) \ (gi ∩ g′1). Assume without loss of generality

that this set B ∈ gi. But now B ⊂ g′j for some j 6= 1, while it is not in

g′1 ∋ A. But there is a connected cluster in G containing both A and B,

namely gi, and so it follows that g′1 and g′j are intersecting, contradicting the

hypothesis that they are maximally connected components. A compatible

collection of contours is depicted in Fig. 5.1.

Definition 5.1.2 Let g be a connected polymer. We define the set g ≡
∪A∈gA to be the support of g. Then the activity, wη

Λ(g), is defined as

wη
Λ(g) =

∫
dρg∩Λσg∩Λ

∏

A∈g

(
eβΦA(σA∩Λ,ηA∩Λc ) − 1

)
(5.4)

Lemma 5.1.2 Let G = (g1, . . . , gn) be a polymer with connected compo-

nents gi. Then
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∫
dρΛ(σΛ)

∏

A∈G

(
eβΦA(σA∩Λ,ηA∩Λc ) − 1

)
=

n∏

i=1

wη
Λ(gi) (5.5)

Proof. This formula follows from the simple observation that, by the defi-

nition of connectivity, different components gi involve integrations only over

spin variables on disjoint sets g.

Remark 5.1.2 Note that wΛ(g) depends on ηΛc only if g is a connected

component of G that intersects the complement of Λ.

A simple consequence of Lemma 5.1.2 is:

Theorem 5.1.3 (Polymer representation.) With the definition above

Zη
Λ,β =

∞∑

n=0

1

n!

∑

g1,g2,...,gn

1I∀i6=jgi 6∼gj

n∏

i=1

wη
Λ(gi) (5.6)

where the sum is over connected polymers and g 6∼ g′ means g and g′ are

not connected.

Remark 5.1.3 The factor 1/n! takes into account the fact that relabeling

the connected polymers gives the same polymer G. One frequently expresses

the sum in (5.6) as a sum over compatible collections of connected polymers,

where compatible just means that all elements of the collection are mutually

disconnected.

The formulation of the partition function given by Theorem 5.1.3 can be

seen as a particular instance of a more general class of sums where connected

polymers are elements of certain sets endowed with a compatibility relation,

and with certain weights, called activities. The question one wants to pose

then is under what conditions can these sums be evaluated through conver-

gent series? Thus, before continuing our investigation of high-temperature

expansions, we will address this general question in an abstract context.

5.2 Polymer models. The Dobruschin–Kotecký–Preiss criterion

Abstract polymer models are constructed as follows. Assume that there is a

countable set, Γ, endowed with the structure of a simple1, loop-free2 graph

G. Of course, without loss of generality, we can take Γ to be the set of

natural numbers or a subset thereof. Moreover, we will assume that N is

1 I.e. each edge appears only once.
2 I.e. (g, g) is not an edge of G.
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endowed with the structure of an infinite graph, G∞, once and for all, and

any subset, Γ ⊂ N, is naturally endowed with the induced graph.

We say that g ∼ g′, iff (g, g′) is an edge of G. Otherwise, we write g 6∼ g′.

Let, furthermore, w : Γ → C be a complex valued function on Γ. We define

a function ZΓ ≡ ZΓ((w(g), γ ∈ Γ)) on C
Γ, through

ZΓ ≡
∞∑

n=0

1

n!

∑

g1,...,gn⊂Γ

1I∀i6=jgi 6∼gj

n∏

i=1

w(gi) (5.7)

Clearly (5.6) is a special case of such a function. It will be useful to think of

the sum in (5.7) as a sum over all completely disconnected subsets of Γ. To

make this notion precise, we will say that G ⊂ Γ is completely disconnected

if the subgraph induced by G on G has no edges. Let us denote the set of

completely disconnected subsets of Γ by DΓ,

DΓ ≡ ∪|Γ|
ℓ=0 {(g1, . . . , gℓ) ⊂ Γ : ∀i6=j≤ℓ gi 6∼ gj} (5.8)

Then (5.7) can be written as

ZΓ =
∑

G∈DΓ

∏

g∈G

w(g) (5.9)

Our aim is to show under which conditions it is true that the logarithm of

ZΓ can be written as a convergent power series in the (complex) variables

w(g). Here the logarithm of a complex number z = a + ib with a > 0 will

be understood to be ln(a+ ib) = 1
2 ln(a

2 + b2) + iarcth(b/a). We will make

sure in the course of the proof that we will have to compute logarithms only

on this domain of the complex plane1.

That is, we will seek to write

lnZΓ =
∑

C∈C
KC

∏

g∈C

w(g) (5.10)

where the sum should run over a suitable set C and the KC are constants.

Stated as such, both expressions (5.9) and (5.10) will be infinite most of the

time when Γ is infinite. If Γ is finite, the expression for the partition function

is necessarily finite, but it will most likely diverge, as the size of Γ tends to

infinity. But even if Γ is finite, we will need conditions for the logarithm

to be representable as a convergent series2. What we really would like to

obtain is a condition that allows us to write (5.10) as a (possibly infinite)

sum of expressions that are under suitable conditions finite all the time, and

1 That means, in particular, that we will identify a domain in C|Γ| in the variables w(g), con-
taining the origin in the variables w(g), on which the real part of the partition function does
not vanish.

2 Already if Γ = {1}, we have Z = 1+w1, but lnZ = ln(1+w1) will be an absolutely convergent
series in w1 only if |w1| < 1.
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that suffice to compute the free energy per volume as a finite expression in

the limit as Λ goes to infinity.

A natural candidate for a expression that may remain finite is a sum over

connected sets1 containing a given element. It remains to guess what could

be a candidates for the set C. Since taking the logarithm involves power

series, it is natural to guess that we will end up finding sums over terms

where the elements of Γ can occur arbitrarily many times. Thus we consider

the set of all collections of elements of Γ with repetition, such that the

induced graph of this set is connected. Formally, we think of these sets as

multi-indices n = (n1, . . . , n|Γ|), where ng counts the number of occurrences

of g. Frequently, one refers to multi-indices also as clusters. Thus, we can

define

C∗
Γ ≡

{
n ∈ N

Γ
0 : {g ∈ Γ : ng ≥ 1} is connected

}
(5.11)

Theorem 5.2.1 Let Γ be any finite subset of N, and let a : N → R+ be

chosen arbitrarily. Let P a
Γ ⊂ C

Γ be the set of complex numbers w(g), g ∈ Γ,

such that, for any g ∈ Γ, |w(g)|ea(g) < 1, and
∑

g′∼g

(
− ln

(
1− |w(g′)|ea(g′)

))
≤ a(g) (5.12)

Then, on P a
Γ , lnZΓ is well defined and analytic. In particular, there are

constants, Kn, such that

lnZΓ =
∑

n∈C∗
Γ

Kn

∏

g′∈Γ

w(g′)ng′ (5.13)

and for any g ∈ Γ,
∑

n∈C∗
Γ:ng≥1

|Kn|
∏

g′∈Γ

|w(g′)|ng′ ≤ − ln
(
1− |w(g)|ea(g)

)
(5.14)

Remark 5.2.1 Note that the sets P a
Γ , for any choice of a, are non-empty

and contain a neighbourhood of the origin, In general, P a
Γ is a poly-disc.

Moreover, if w ∈ P a
N
, then any of its projections to C

Γ will be in P a
Γ .

Remark 5.2.2 Equation (5.13) is called a cluster expansion or Mayer ex-

pansion.

Our first observation is that the constant Kn is independent of Γ and

depends only on n.

1 We say that a subset C ⊂ Γ is connected if the induced graph on C is connected.
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Lemma 5.2.2 Let n ∈ CN, and let Γn denote the subset of N on which n

is non-zero, i.e.

Γn ≡ {g ∈ Γ : ng ≥ 1} (5.15)

Assume that Γn is finite, and that all |w(g)| are so small that lnZΓ has a

convergent expansion of the form (5.13). Then, for all Γ ⊇ Γn,

Kn =
1∏

g∈Γn

ng!

∂
∑

g∈Γn

ng

∏
g∈Γn

∂ngw(g)
lnZΓn

∣∣∣∣∣
w(g)=0, ∀g∈Γ

(5.16)

Proof. Considering ZΓ as a polynomial in the variables w(g), g ∈ Γ, the

identity (5.16), with ZΓn
replaced by ZΓ, follows from Taylor’s formula, with

a-priori Γ-dependent Kn. But now write

ZΓ =
∑

G∈DΓn

∏

g∈G

w(g) +
∑

G∈DΓ
G∩(Γ\Γn)6=∅

∏

g∈G

w(g) = ZΓn
+ ZΓn

Γ (5.17)

where

ZΓn

Γ ≡
∑

G∈DΓ
G∩(Γ\Γn)6=∅

∏

g∈G

w(g) (5.18)

Thus

lnZΓ = lnZΓn
+ ln

(
1 +

ZΓn

Γ

ZΓn

)
(5.19)

But

ln

(
1 +

ZΓn

Γ

ZΓn

)
=

∞∑

ℓ=1

(−1)ℓ

ℓ

(
ZΓn

Γ

ZΓn

)ℓ

(5.20)

and, expanding further, all terms appearing contain some factor w(g) with

g ∈ Γ\Γn. None of the differentiations in (5.16) removes such a factor, and

thus, setting w(g) = 0 in the end, all terms vanish, so that

∂
∑

g∈Γn

ng

∏
g∈Γn

∂ngw(g)

(
1 +

ZΓn

Γ

ZΓn

) ∣∣∣∣∣
w(g)=0, ∀g∈Γ

= 0 (5.21)

so that we get (5.16). This proves the lemma.

Remark 5.2.3 The estimate (5.14) implies that the functions∑

n∈C∗
Γ:ng≥1

Kn

∏

g′∈Γ

w(g′)ng′ (5.22)

are convergent series for any Γ ⊂ N, whenever the variables w(g) satisfy the

hypothesis (5.12). Thus, these functions are holomorphic functions of the

|Γ| complex variables in the respective poly-disc. Due to the observation
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of the preceding lemma, we can define these functions also for Γ = N, and

obtain, due to the uniformity of the estimates (5.14), convergent sums.

Corollary 5.2.3 Assume that there is a function a : N → R+ such that,

for any g ∈ N, ∑

N∋g′∼g

(
− ln

(
1− |w(g′)|ea(g′)

))
≤ a(g) (5.23)

Then, for any function w : N → C such that w(g′) satisfies condition (5.23),

for any g ∈ N, the series

F (g) ≡
∑

n∈C∗
N
:ng≥1

Kn

∏

g′∈N

w(g′)ng′ (5.24)

where Kn is defined by the right-hand side of (5.16), is absolutely convergent,

and represents an analytic function of any of the variables w(g′). Moreover,

if w(g) = wg(z) are holomorphic functions of a complex variable z, and if

D ⊂ C is a domain such that, for all z ∈ D, (5.12) is satisfied for all g ∈ N,

then the series F (g), as a functions of z, is holomorphic on D.

Proof. (of Theorem 5.2.1) The theorem will be proven by induction over

the cardinality of the sets Γ, i.e. we will assume that the theorem holds for

all sets of cardinality |Γ| = N and then deduce it for all sets of cardinality

N + 1.

It is already instructive to verify the theorem for the case N = 1. Here

the hypothesis is void, while the assertion states that
∞∑

n=1

|Knw(1)
n| ≤ − ln(1− |w(1)|) (5.25)

where ln(1 + w(1)) =
∑∞

n=1Knw(1)
n. Clearly, in this case Kn = (−1)n

n ,

which implies (5.25) with equality.

The key identity that will allow us to carry through the induction is a

formula similar to (5.17). Let ΓN be any set of cardinality N , and let

g 6∈ ΓN . Set ΓN+1 = ΓN ∪ {g}. Then any G ∈ DΓN+1
is either a completely

disconnected set of elements taken only from ΓN , and thus is an element of

DΓN
, or the collection G contains g, and is completely disconnected in Γ∪g.

Thus

ZΓN+1 =
∑

G∈DΓN

∏

g′∈G

w(g′) +
∑

G∈DΓN+1
g∈G

∏

g′∈G

w(g′) (5.26)

= ZΓN
+ w(g)ZΓg

N

Here we have defined

Γg
N ≡ {g′ ∈ ΓN : g′ 6∼ g} (5.27)



5.2 Polymer models 93

the subset of elements of Γ that are not connected to g. The first equality in

(5.26) is obvious. To see the second one, note that, for any G in the second

sum, one of its elements is g. Thus we can write G = (g,G′). Since g can

occur only once in G, G′ is made from elements of ΓN . Moreover, since

G ∈ DΓN+1
, none of these elements may be connected to g, so in fact G′ is

made from elements of Γg
N . Moreover, these elements must be completely

disconnected, which means that∑

G∈DΓN+1
g∈G

∏

g′∈G

w(g′) =
∑

G′∈DΓ
g
N

w(g)
∏

g′∈G′

w(g′) = ZΓg
N
w(g) (5.28)

Now the nice thing is that both ΓN and Γg
N are sets of no more than N

elements, and thus the induction hypothesis can be applied to both partition

functions on the right-hand side of (5.26). We want to write

lnZΓN+1 = lnZΓN
+ ln

(
1 + w(g)

ZΓg
N

ZΓN

)
(5.29)

To be able to do so, we must ensure that the term

∣∣∣∣w(g)
Z
Γ
g
N

ZΓN

∣∣∣∣ is strictly

smaller than one. But (with the abbreviation Wn ≡∏g′∈Γn

w(g′)ng′ ),

ZΓg
N

ZΓN

= exp



∑

n∈C∗
Γ
g
N

KnWn −
∑

n∈C∗
ΓN

KnWn


 (5.30)

= exp


−

∑

n∈C∗
ΓN

\C∗
Γ
g
N

KnWn




where we used the fact that, if Γ′ ⊂ Γ, then C∗
Γ′ ⊂ C∗

Γ. The set C∗
ΓN

\ C∗
Γg
N

is obviously the set of all connected multi-indices that contain at least one

element that is connected to g,

C∗
ΓN

\ C∗
Γg
N
=
{
n ∈ C∗

ΓN
, ∃g′ ∈ Γ : g′ ∼ g,∧ng′ ≥ 1

}
(5.31)

This allows us to bound
∣∣∣∣
ZΓg

N

ZΓN

∣∣∣∣ ≤ exp


+

∑

n∈C∗
ΓN

\C∗
Γ
g
N

|Kn||Wn|


 (5.32)

Now
∑

n∈C∗
ΓN

\C∗
Γ
g
N

|Kn||Wn| ≤
∑

g′∈Γ,g′∼g

∑

n∈C∗
ΓN

,ng′≥1

|Kn||Wn| (5.33)

≤
∑

g′∈ΓN , g′∼g

∣∣∣ln
(
1− |wg′ |ea(g′)

)∣∣∣ ≤ a(g)
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where the last-but-one inequality uses the induction hypothesis, and the last

inequality uses the condition (5.12). Equation (5.33) implies in particular

that, on P a
ΓN∪g,

|w(g)|
∣∣∣∣
ZΓg

N

ZΓN

∣∣∣∣ ≤ |w(g)|ea(g) < 1 (5.34)

Under these conditions, we can write, using (5.29),

lnZΓN+1 =
∑

n∈C∗
ΓN

KnWn (5.35)

−
∞∑

k=1

(−1)k

k


w(g) exp


−

∑

n∈C∗
ΓN

\C∗
Γ
g
N

KnWn







k

Expanding the powers in the second term, it is manifest that we will obtain

an expression that is a polynomial in the w(g′), where each monomial will

involve at least one power of w(g), and where the corresponding multi-index

belongs to C∗
ΓN+1

.

Now write the obvious formula

lnZΓN+1 =
∑

n∈C∗
ΓN+1

ng=0

KnWn +
∑

n∈C∗
ΓN+1

ng≥1

KnWn (5.36)

Since the set {
n ∈ C∗

ΓN+1
, ng = 0

}
= C∗

ΓN
(5.37)

we recognize in the first factor the logarithm of the partition function ZΓN
,

and thus we deduce that
∑

n∈C∗
ΓN+1

ng=≥1

KnWn = ln

(
1 + w(g)

ZΓg
N

ZΓN

)
(5.38)

Inserting the expansion (5.33), we see that

∑

n∈C∗
ΓN+1

ng=≥1

|Kn||Wn| ≤
∞∑

k=1

1

k


|w(g)| exp




∑

n∈C∗
ΓN

\C∗
Γ
g
N

|Kn||Wn|







k

= − ln


1− |w(g)| exp




∑

n∈C∗
ΓN

\C∗
Γ
g
N

|Kn||Wn|







≤ − ln
(
1− |w(g)|ea(g)

)
(5.39)

which is indeed the assertion of the theorem for ΓN+1. Since the foregoing
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argument holds for any g 6∈ Γ, the inductive step is concluded and the

theorem proven.

Remark 5.2.4 The first proof of the convergence of the high-temperature

expansion in a lattice model, due to Gallavotti, Miracle-Solé and Robin-

son [35, 37], did not use polymer models but was based on the Kirkwood-

Salsburg equations [52]. The notion of a polymer model was introduced by

Gruber and Kunz [43]. The idea of the Mayer expansion was introduced

in the physical literature, probably by Mayer [63], in the study of inter-

acting gases. Convergence of the Mayer expansion in polymer models was

first proven for repulsive gases by Rota [74], and later by Cammarota [18].

These proofs were based on combinatorial bounds on the coefficients Kn,

which were represented as sums over connected graphs (controlling the pos-

sible connectivity structure of the multi-indices n). The key observation was

that these sums could in turn be bounded by sums over trees, of which there

are sufficiently few to achieve convergence. These techniques were simplified

and stream-lined in works of Battle [3], Glimm-Jaffe [40], Federbush [31, 4],

Brydges [15, 14], V.A. Malyshev [62], and others. A good exposition of this

combinatorial approach is given in Simon’s book [80]. A formulation of the

convergence condition similar to that of our Theorem 5.2.1 appeared in 1984

in a paper by R. Kotecký and D. Preiss [54], and their analogue of the con-

dition (5.12) is known as the Kotecký-Preiss criterion. Their proof makes

use of the so-called Möbius inversion formula which allows us to express the

logarithm of a sum over disconnected sets as a sum over connected clusters.

This was the first major step towards a reduction of combinatorial efforts in

the convergence proofs.

The present form of Theorem 5.2.1 was first proven by R.L. Dobrushin

[26], who also initiated the idea to prove the convergence by induction over

the set of polymers. The observation of Lemma 5.2.2 is also due to him.

The main difference between his proof and the one presented here is that he

used the the Cauchy integral representation for the coefficients Kn to obtain

bounds and to prove convergence. The idea of proving the estimates neces-

sary for convergence directly by induction is due to M. Zahradńık, and was

first used in a paper by F. Nardi, E. Olivieri, and M. Zahradńık [65], with

a different form of the hypothesis (5.12) (that gives slightly worse estimates

on the domain of analyticity). Independently, S. Miracle-Sole [64] gave a

very similar proof. This was further elaborated in the paper [12], where

we also observed that the method of proof can also yield the conditions in

Dobrushin’s form, i.e. Theorem 5.2.1. The first purely inductive proof of

the theorem in this form is, however, due to A. Sokal [83]. An extensive dis-
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Fig. 5.2. A connected cluster of polymers.

cussion, dealing also with more general models, and making connections to

Lovasz’ Lemma in graph theory, can be found in a recent paper by Scott and

A. Sokal [79]. A concise exposition that also covers the case of continuous

state space is given by Ueltschi in [87].

5.3 Convergence of the high-temperature expansion

We will now use the general convergence criterion for the polymer model

to obtain a convergence criterion for the high-temperature expansion. The

polymers g are now the connected polymers g from Section 5.1, and the

graph on this set is derived from the connectivity defined in Definition 5.1.1.

A connection cluster of such polymers is depicted in Fig. 5.2. All we need

to do is to establish criteria for the interaction under which in this context

(5.12) holds.

We will readily make our life a bit easier. First, we will use the bound

|wη
Λ(g)| ≤

∏

A∈g

(
eβ‖ΦA‖∞ − 1

)
≡
∏

A∈g

v(A) (5.40)

We will choose a(g) =
∑

A∈g ã(A) with ã(A) = c|A|, and c to be determined

later. We will assume that, with this choice, v is such that there exists

K < ∞, such that, for all k ≥ 0, and with b < ∞,

sup
x∈Zd

∑

A∋x

v(A)eã(A)|A|k ≤ k!bkK (5.41)

Lemma 5.3.1 Assume that the temperature and activities are such that

(5.41) is satisfied with ã(A) = 4bK
1−2bK |A|. Assume that Φ is a translation

invariant interaction. Then the polymer activities satisfy the Dobrushin–

Kotecký–Preiss criterion (5.12).
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Proof. To simplify the argument, we will use that, for 0 ≤ x ≤ 1/2,

− ln(1− x) ≤ 2x, and show that the stronger condition
∑

g′∼g

2v(g′)ea(g
′) ≤ a(g) (5.42)

holds for suitable choices of a (where v(g) ≡ ∏
A∈g v(A)). The key idea

of the proof is to use the fact that, if g′ = (A1, . . . , Ak) is a connected

polymer, then there exists a tree1 on the set {1, . . . , k}, such that, if (i, j)

is an edge of the tree, then Ai ∩ Aj 6= ∅. While there are several ways to

assign a tree to a polymer, it is possible to choose a rule that makes this

assignment univalent. Moreover, if g′ is connected to g, then (at least) one

of its components intersects g. Without loss of generality, we can assume

that this component is A1. We will single out the vertex 1 of the tree and

consider it its root. In the sequel, all trees appearing will be understood to

be rooted in the origin. Next observe that, if Φ is translation invariant, then

so is v(A). Thus we get the first simple estimate
∑

g′∼g

2v(g′)ea(g
′) ≤ |g|

∑

g′∋0

2v(g′)ea(g
′) (5.43)

From this estimate it is clear that we will need to choose a(g) ≥ |g|. On the

other hand, we will succeed if we can show that
∑

g′∋0

2v(g′)ea(g
′) ≤ const. (5.44)

Now

∑

g′∋0

2v(g′)ea(g
′) =

∞∑

k=1

1

(k − 1)!

∑

t

∑

A1,A2,...,Ak
t(A1,...,Ak)=t

2

k∏

i=1

v(Ai)e
ã(Ai) (5.45)

The idea is to sum over the sets Ai starting from the leaves (= vertices

of co-ordination number one that are not the root) of the tree and to use

(5.41). Note that a vertex, ℓ, to which c− 1 leaves are attached produces a

factor

|Aℓ|c−1

(
∑

A∋0

v(A)eã(A)

)c−1

≤ |Aℓ|c−1Kc−1 (5.46)

This explains the necessity to have the conditions (5.41) with k > 0. It also

shows that it is important to keep track of the coordination numbers of the

vertices of the tree t. Therefore we will sum first over the possible assignment

1 A tree is a graph that is connected and contains no loop.
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of coordination numbers2, c1, . . . , ck (satisfying
∑k

i=1 ci = 2(k−1)), and then

over all trees with these coordination numbers:

∑

t

∑

A1,A2,...,Ak
t(A1,...,Ak)=t

2

k∏

i=1

v(Ai)e
ã(Ai) (5.47)

=
∑

c1,...,ck

∑

t:ci(t)=ci

∑

A1,A2,...,Ak
t(A1,...,Ak)=t

2

k∏

i=1

v(Ai)e
ã(Ai)

Summing successively over all Ai, starting from the leaves, then the leaves

of what is left, and finally over the root, we get the estimate

∑

A1,A2,...,Ak
t(A1,...,Ak)=t

2
k∏

i=1

v(Ai)e
ã(Ai) ≤ Kkbk−1c1!

k∏

i=2

(ci − 1)! (5.48)

Finally, we must count the number of trees that have given coordination

numbers. This is a classical formula, due to Cayley [7], and it states that
∑

t:ci(t)=ci

1 =
(k − 2)!

(c1 − 1)! . . . (ck − 1)!
(5.49)

Remark 5.3.1 The proof of this formula is simple and uses induction over

the number of vertices. It can be found in Simon [80].

It follows that

∑

t

∑

A1,A2,...,Ak
t(A1,...,Ak)=t

2

k∏

i=1

v(Ai)e
ã(Ai)

≤ 2
∑

c1,...,ck∑
ci=2(k−1)

(k − 2)!

(c1 − 1)! . . . (ck − 1)!
Kkbk−1c1!

k∏

i=2

(ci − 1)!

= 2
∑

c1,...,ck∑
ci=2(k−1)

c1(k − 2)!Kkbk−1 (5.50)

Finally, we use that c1 ≤ k − 1 , and that
∑

c1,...,ck≥1∑
ci=2(k−1)

1 =

(
2(k − 1)

k

)
≤ 2k (5.51)

to see that

2 I learned this from a lecture given by Jürg Fröhlich at the ETH Zurich in 1982/3, of which
there are hand-written lecture notes by Giovanni Felder. I’m not aware that this trick was
published earlier.
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∞∑

k=1

1

(k − 1)!

∑

t

∑

A1,A2,...,Ak
t(A1 ,...,Ak)=t

2
k∏

i=1

v(Ai)e
ã(Ai) (5.52)

≤
∞∑

k=1

2(2bK)k =
4Kb

1− 2bK
(5.53)

Thus, we can choose a(g) =
∑

A∈g
4Kb

1−2bK |A| and impose as a condition on

v(A) that
∑

A∋0

|v(A)||A|ke 4Kb
1−2bK |A| ≤ Kk!bk (5.54)

Exercise: Assume that
∑

A:|A|=M ‖ΦA‖∞ ≤ Ce−δM , with δ > 0. Show that

there exists β0 > 0, such that, for β < β0, the DKP criterion is satisfied.

We will now show a few implications of Lemma 5.3.1. The first is, natu-

rally, the existence of a convergent expansion for the free energy.

Theorem 5.3.2 Assume that we are given a regular, translation invariant

interaction Φ, and assume that the hypothesis of Lemma 5.3.1 is satisfied.

Assume that Λn is an increasing and absorbing sequence of subsets of Zd

and limn↑∞
|∂Λn|
|Λn|

= 0. Then, for any η ∈ S,
lim
n↑∞

1

|Λn|
lnZη

β,Λn
=
∑

n:n∋0

1

|n|Kn

∏

g:ng≥1

(wβ(g))
ng (5.55)

Here we have set n = ∪g:ng≥1g.

Proof. Under our assumptions, for any given Λ, it holds that

lnZη
β,Λ =

∑

n∈C∗
ΓΛ

Kn

∏

g:ng≥1

(wη
Λ(g))

ng (5.56)

where ΓΛ are all connected polymers that can be constructed from sets

A intersecting Λ. It will be convenient to split this set into those polymers

that are contained in Λ, and those that intersect both Λ and its complement.

Note that, if g is contained in Λ, then its activity does not depend on either

Λ or η, so that

lnZη
β,Λ =

∑

n∈C∗
ΓΛ

n∩Λc 6=∅

Kn

∏

g:ng≥1

(wη
Λ(g))

ng +
∑

n∈C∗
ΓΛ

n⊂Λ

Kn

∏

g:ng≥1

(w(g))ng (5.57)

The second sum can be written, as
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∑

n∈C∗
ΓΛ

n⊂Λ

Kn

∏

g:ng≥1

(w(g))ng =
∑

x∈Λ

∑

n∈C∗
ΓΛ

x∈n⊂Λ

Kn

|n|
∏

g:ng≥1

(w(g))ng (5.58)

=
∑

x∈Λ

∑

n∈C∗
Γ
Zd

x∈n

Kn

|n|
∏

g:ng≥1

(w(g))ng −
∑

x∈Λ

∑

n∈C∗
Γ
Zd

x∈n∩Λc 6=∅

Kn

|n|
∏

g:ng≥1

(w(g))ng

= |Λ|
∑

n∈C∗
Γ
Zd

0∈n

Kn

|n|
∏

g:ng≥1

(w(g))ng −
∑

n∈C∗
ΓΛ

n∩Λ 6=∅∧n∩Λc 6=∅

Kn

∏

g:ng≥1

(w(g))ng

Note that the addition and subtraction of clusters that are not contained

in Λ produces a term that is fully translation invariant and that yields that

desired expression for the infinite-volume free energy density in terms of a

convergent series, while the second sum involves only clusters that cross the

boundary of Λ and thus will be seen to give a contribution that vanishes in

the infinite-volume limit. We still have to show that the coefficient of |Λ| in
(5.58) is uniformly bounded. But, using the assertion of Theorem 5.2.1,

∣∣∣∣∣∣∣∣

∑

n∈C∗
ΓΛ

0∈n

Kn

|n|
∏

g:ng≥1

(w(g))ng

∣∣∣∣∣∣∣∣
≤

∑

g′:g′∋0

∑

n∈C∗
Γ
Zd

ng≥1

|Kn|
|n|

∏

g:ng≥1

|w(g)|ng

≤
∑

g′:g′∋0

(
− ln

(
1− |w(g)|ea(g)

))

≤ a(0) (5.59)

where the last inequality is obtained by identifying 0 with the support of a

one-site polymer situated at the origin.

It remains to show that the first term in (5.57) and the second summand

in (5.58) tends to zero when divided by |Λ|. But this follows easily, since

these sums only involve clusters that intersect1 the boundary of Λ. Thus we

get, using the same arguments as before, e.g.
∣∣∣∣∣∣∣∣∣

∑

x∈Λ

∑

n∈C∗
Γ
Zd

x∈n∩Λc 6=∅

Kn

|n|
∏

g:ng≥1

(w(g))ng

∣∣∣∣∣∣∣∣∣
≤
∑

x∈∂Λ

∣∣∣∣∣∣∣∣

∑

n∈C∗
Γ
Zd

x∈n

Kn

|n|
∏

g:ng≥1

(w(g))ng

∣∣∣∣∣∣∣∣

≤ |∂Λ|a(0) (5.60)

which tends to zero when divided by |Λ|.
1 In the sense that its support intersects both Λ and Λc.
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From the computation of partition functions we can easily pass to the

compute correlation functions, i.e. expectation values. It will be enough

to compute probabilities of events of the form {σx = ηx, x ∈ D}, D ⊂ Z
d,

and these can be expressed as ratios of partition functions Zη
β,Λ′

n
and Zη

β,Λn
,

where Λ′
n = Λn \D. Applying the cluster expansion in both the numerator

and denominator, we see that there is a huge cancellation of terms, and only

multi-indices that intersect D will survive:

Zη
β,Λ′

n

Zη
β,Λn

= exp




∑

n∈C∗
ΓΛn

n∩D 6=∅

Kn



∏

g:ng≥1

(wη
Λ′

n
(g))ng −

∏

g:ng≥1

(wη
Λn

(g))ng







(5.61)

Since the respective sums converge absolutely, we can take the limit n ↑ ∞
and obtain expressions that do not depend on the boundary conditions η,

except for ηD,

lim
n↑∞

Zη
β,Λ′

n

Zη
β,Λn

= µβ ({σx = ηx, x ∈ D}) (5.62)

= exp




∑

n∈C∗
Γ
Zd

n∩D 6=∅

Kn



∏

g:ng≥1

(wηD

Dc (g))
ng −

∏

g:ng≥1

(wβ(g))
ng







Note that (5.62) gives an alternative proof for the uniqueness of the Gibbs

measure for regular interactions at high temperatures, since the explicit

expressions for marginals of the Gibbs measure in the thermodynamic limit

are independent of the sequence of volumes and the boundary conditions.

The explicit expressions for these correlations may look quite horrible, but

they are not as bad as they look. After all, all sums are rapidly converging,

and computing a few terms already tends to give reasonable approximations.

The explicit computation to high orders (say 20) is, however, a tedious task,

to which a large number of people have devoted a great deal of work. The

objective of such computations has often been to try get information beyond

the regime of high temperatures where the convergence is assured, and even

to use analytic extrapolation ideas (e.g. Padé approximants) to guess the

nature of the singularities of the partition function at second order phase

transitions.

Example: The Curie–Weiss model. Although the cluster expansion is

not the tool of choice to do computations in mean field models, it may be

interesting to see it in action in a model where we already know everything,
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namely the Curie–Weiss model. We recall the the partition function (we set

h = 0) is (with a slight modification from the convention of Chapter 3)

Zβ,N = 2−N
∑

σ∈{−1,1}N

e
β
N

∑
i<j σiσj (5.63)

We will not use some special features of Ising spins, in particular the fact

that

eβσiσj/N = cosh(β/N) (1 + σiσj tanh(β/N)) (5.64)

which allows us to write

Zβ,N = [cosh(β/N)]
N(N−1)

2 Ẑβ,N (5.65)

with

Ẑβ,N ≡ 2−N
∑

σ∈{−1,1}N

∏

G∈GN

∏

(i,j)∈G

(σiσj tanh(β/N)) (5.66)

where GN is the collection of all subsets of pairs (i, j), i, j ∈ {1, . . . , N}, with
i 6= j, i.e. the collection of all simple, loop-free graphs on N vertices. The

reduced partition function, Ẑβ,N , can be written in the form (5.6), with

wN (g) ≡ [tanh(β/N)]b(g)2−|g|
∑

σi,i∈g

∏

(i,j)∈g

σiσj (5.67)

and where the sum is over connected graphs, g, on N vertices. b(g) denotes

the number of edges in the graph g. It is easy to see that the sum over σ in

(5.67) vanishes, unless all vertices i in γ have a coordination number that is

even, in which case the sum is equal to 2|g|. Thus

wN (g) ≡ [tanh(β/N)]b(g)1I{g has only even coordination numbers} (5.68)

We can now check the DKP criterion. We can take a(g) = c|g|, and so we

only have to bound
∑

g∋1 |wN (g)|ec|g| to find c. To control this sum, we note

that any g containing 1 can be obtained by performing a walk on {1, . . . , N}
starting at 1 that is not tracing back immediately, and that in the last step

returns to 1. Thus, summing over all such walks certainly gives us an upper

bound. We get, using that |g| ≤ b(g) and that the shortest closed g has

three edges,

∑

g∋1

|w(g)|ec|g| ≤
N(N−1)/2∑

k=3

(N − 1)k−1[tanh(β/N)]keck (5.69)

≤ tanh(β/N)ec
∞∑

k=2

Nk tanhk(β/N)eck

≤ tanh(β/N)e3c
N2 tanh2(β/N)

1−N tanh(β/N)ec
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For large N , N tanh(β/N) ≤ β, so that
∑

g∼g′

|w(g)|ec|g| ≤ |g′|N−1β3e3c
1

1− βec
(5.70)

so that the condition for c becomes

N−1β3e3c
1

1− βec
≤ c (5.71)

which can be satisfied for any β < 1 with c = c′/N , c′ ∼ 1/(1 − β). Thus

we see that the convergence of the high-temperature expansion is ensured

whenever β < 1, in agreement with the exact results. Note also that all

terms in the expansion will be of order 1/N , in agreement with the fact that

in the Curie–Weiss model, with our normalization, the free energy is equal

to zero for β ≤ 1.

Remark 5.3.2 The fact that we can control the DKP criterion right up to

the critical point, β = 1, is quite atypical. It is due to the fact that the

activies of all high-temperature polymers are a factor of 1/N smaller than

the inverse of their number, since only loops contribute. This allowed us to

choose a(g) ∼ N−1|g|. As soon as we add a magnetic field to the Hamil-

tonian (i.e. break the spin-flip symmetry), this feature disappears and we

get more restrictive conditions for the convergence of the high-temperature

expansion. Of course, if we are careful enough with the combinatorics, we

should be able to recover a domain of convergence of the form β < 1−O(h)

if h is small.

5.4 Low-temperature expansions

The ideas developed in the high-temperature expansions, together with what

we observed in the Peierls argument, suggest that it should also be possi-

ble to develop systematic convergent expansions for the free energy (and

hence expectation values) in the limit of low temperatures. In fact, the

Peierls representation of the Ising model at low temperatures suggests that

we should write the partition function as a sum over geometric entities –

contours separating regions of positive and negative values of σ – that are

connected, mutually disjoint, and have small activities, just as the polymers

of the high-temperature expansion.

5.4.1 The Ising model at zero field

Let us first focus on the Ising model with zero magnetic field. It is convenient

to write the Hamiltonian in a slightly different form as
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HΛ(σ) =
∑

<x,y>∩Λ6=∅
1Iσx 6=σy

(5.72)

We will for simplicity only consider constant +1 or −1 boundary conditions

outside of Λ. Then the Hamiltonian is just the volume of the set

Γ(σ) = {< x, y > ∩Λ 6= ∅ : σx 6= σy} (5.73)

The partition function can then be written as

Zβ,Λ =
∑

Γ

∑

σ:Γ(σ)=Γ

e−β|Γ| (5.74)

The set Γ can be decomposed into connected subsets, γ1 . . . , γg, that are

called contours. In the Ising model we can think of them (see Section 4.3.2)

as closed loops on the dual lattice separating domains of spins with constant

sign, which is the reason for the name contours. Thus,

Zβ,Λ =

∞∑

k=0

1

k!

∑

γ1...,γk

∑

σ:Γ(σ)=(γ1,...,γk)

k∏

ℓ=1

e−β|γℓ| (5.75)

=
∞∑

k=0

1

k!

∑

γ1...,γk

∏

i6=j

1Iγi 6∼γj

k∏

ℓ=1

e−β|γℓ|

where we used that the spin configurations are uniquely determined (for

given sign of the boundary conditions) by the contours, and that all con-

figurations of mutually disjoint loops are compatible with some spin con-

figuration. We see that the the form of this partition function is the same

as that of the high-temperature expansion in Theorem 5.1.3. Moreover, the

activities are small if β tends to infinity, so that we can analyse this partition

function in exactly the same way as the high-temperature expansion, using

the general theory of polymer models. It is thus easy to show that, for large

enough values of β, we obtain an absolutely convergent expansion for the

free energy per site, and it is also easy to show the existence of two Gibbs

states, as was already proven using the Peierls argument.

However, this example is misleadingly simple. In particular, the perfect

symmetry of the interaction is used to remove all reference to the spin con-

figurations. Already when we add a magnetic field term to the Hamiltonian,

this symmetry is lost and it is impossible to obtain such a simple representa-

tion, since we need to keep track of the sign of the spins outside the contours.

Nonetheless, low-temperature expansions using the concept of contours are

the basis of the most powerful machinery to analyse the phase diagram of

spin systems at low temperatures, the Pirogov–Sinai theory [69, 70]. I

will not give a detailed exposition of this theory here, because an excellent
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pedagogical exposition is being written by Ch. Borgs and R. Kotecký [11],

which the interested reader should consult. I will only explain the general

setup of contour models and outline the main ideas in an informal way.

5.4.2 Ground-states and contours

In the zero field Ising model, the contour representation can be seen in-

tuitively as an expansion around the obvious ground-states of the model,

namely the configurations that are constant, either +1 or −1. This notion

of ground-states requires, however, a bit more care, since we are dealing

with infinite systems. The standard definition reads [2]:

Definition 5.4.1 Let Φ be a regular interaction, and HΛ the corresponding

finite volume Hamiltonians. A configuration, η ∈ S, is called a ground-state

for Φ, iff for all finite Λ ⊂ Z
d,

HΛ(η) = inf
σΛ∈SΛ

HΛ(σΛ, ηΛc) (5.76)

Examples: In the Ising model with zero field, the states that are constant

are two obvious ground-states in the above sense. But they are not the only

ones. Another example is

ηx =

{
+1, if x1 ≥ a

−1, if x1 < a
(5.77)

as the reader can easily verify. In fact, the set of ground-states is typically

extremely rich. Below we will be mostly concerned with translation invariant

ground-states, which form a small subset of all ground-states.

The basic idea of low-temperature expansions is that, for large β, one

should be able to construct Gibbs states that are essentially supported on

perturbations of the ground-states; at least one would expect this for the

translation invariant ground-states. It may be surprising that this turns out

to be not exactly true.

The idea of a contour representation is to assign to a configuration η ∈ S
a partition of Zd into region where the configuration looks locally like one of

the translation invariant ground-states, and regions where it does not. The

latter are called contours (in analogy with the Ising example). They should

carry considerable excess energy, and therefore their appearance in the Gibbs

measure should be suppressed. The precise implementation of this general

idea is unfortunately model dependent, and can be very cumbersome. In the

following we will consider only a relatively simple context, where we assume

the following to be true:
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(i) The state space S0 is finite.

(ii) The interaction is finite range, i.e. ∃R < ∞, such that ΦA ≡ 0

whenever diam(A) > R.

(iii) There exists a set Q ⊂ S0, such that the constant configurations,

σx ≡ q, q ∈ Q, are the only periodic ground-states of Φ.

In this setting, we can decide whether, locally at x ∈ Z
d, a configuration σ

‘looks like’ one of its ground-states by looking only at a finite neighbourhood

of radius R of x.

We define c(x) = q if ηz = q for all z : |x − z| ≤ R. One sometimes calls

such points q-points. Otherwise, c(x) is undefined. We set

Γ(η) ≡ {z ∈ Z
d : ∃y : |z − y| ≤ R : c(y) 6∈ Q} (5.78)

and,

Λq(η) ≡ {z ∈ Γ(η) ∧ c(x) = q} (5.79)

Observe that the actual non-q-points are surrounded by large layers of q-

points. This is done to avoid any interaction between different connected

components of contours. Figure 5.3 depicts a collection of contours and the

sets of q-points.

Let us assume that HΛ(q) = 0, and introduce the Hamiltonian with ad-

ditional fields,

H̃Λ(σ) = HΛ(σ) +
∑

x∈Λ

eq1Iσx=q (5.80)

The important observation is that we can represent the energy of a config-

uration σ in the form

H̃Λ(σ) = H̃Λ∩Γ(σ)(σ) +
∑

q∈Q

eq|Λq| (5.81)

where for lighter notation we write Λq for Λ ∩ Λq. Moreover, by construc-

tion, given Γ(σ), H̃Λ∩Γ(σ)(σ) depends only on the configuration on Γ. If

(γ
1
, . . . , γ

n
) are the connected components of Γ, then

H̃Λ∩Γ(σ)(σ) =
n∑

i=1

H̃Λ∩γ
i
(σ)(σ) (5.82)

This allows us to represent the partition function in the form

Zη
n,Λ = EσΛ

∏

i

e
−β

∑
i HΛ∩γ

i
(σ)(σ)

∏

q∈Q

eβcq|Λq| (5.83)

=
∑

Γ

EσΛ1IΓ(σΛ,ηΛc )=Γ

∏

i

e−β
∑

i HΛ∩γ
i
(σ)
∏

q∈Q

eβcq|Λq|

≡
∑

Γ

EσΛ1IΓ(σΛ,ηΛc )=Γ

∏

i

w(γi)
∏

q∈Q

eβcq|Λq|
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Fig. 5.3. A collection of contours in a model with four colours.

where w(γi) can be thought of as activities of the contours. We say that

contours satisfy a Peierls condition, if

Eσ1IΓ(σ)=γw(γ) ≤ exp(−C|γ|) (5.84)

i.e. when their activities are exponentially suppressed.

The representation (5.83) looks similar to that of a polymer model, and

we might hope that the Peierls condition, with large enough C, would en-

sure convergence of the expansion for the logarithm. However, there is an

important difference: the configurations on connected components of the

boundaries of the supports of contours may have different constant values,

and a configuration of connected contours can arise only if these values can

be matched. For example, in the Ising model, we can think of an annulus-

shaped contour that is constant +1 outside and constant −1 inside. In the

interior of the annulus we can then only have contours that at their outer

boundaries are only −1. In cases where there are more ground-states, the

situation is similar and more complicated.

In the Ising model with zero magnetic field, this problem did not seem to

be important, because we did not need to keep track of the fact whether a

contour separated + from− or vice versa, since there was a perfect symmetry

between the two. As soon as this symmetry is broken (either in the weights

or by the presence of the fields cq), the task of controlling the expansion

becomes much more difficult. To get an idea of what is going on, recall the

estimate (4.52) in the proof of the Peierls argument. Right before the last

step we had obtained

µ+1
int γ,β[σγin = −1] ≤ e−2β|γ|Z

(−1)

int (γ)\γin

Z
(+1)

int (γ)\γin

(5.85)
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Then we used the symmetry of the Hamiltonian under spin flip to deduce

that the ratio of partition functions is equal to one. What if this symmetry

is broken, e.g. by a magnetic field? Clearly, if the field is positive, we

would expect the partition function with minus boundary conditions to be

smaller than the one with plus boundary conditions, and so the estimate

is only strengthened. But if the magnetic field is negative, the converse is

true, and the ratio of partition functions spoils our estimate. In fact, at low

temperatures, the spins have the option to follow the sign of the boundary

condition, in which case we would get a bound of the type

Z
(−1)

int (γ)\γin

Z
(+1)
int (γ)\γin

∼ exp (+2βh|int (γ)|) (5.86)

or they flip to −1 within γ, in which we get a bound

Z
(−1)

int (γ)\γin

Z
(+1)

int (γ)\γin

∼ exp (+2β|γ|) (5.87)

which may or may not offset the exponentially small prefactor. If the case

where h|int (γ)| ≪ |γ|, the estimate (5.86) suggests that the contour γ is still

unlikely. This happens when γ is small. The reason is that flipping the spins

cannot produce enough energetic gain from the magnetic field to offset the

cost paid for the resulting interaction energy. But it may be advantageous

of create a large contour, whose interior is large compared to its surface, to

take advantage of the corresponding gain in magnetic field energy. It is thus

possible that, under plus boundary conditions, the systems likes to create

an enormous contour right near the boundary, so that in the inside it looks

just the same as the system with minus boundary conditions. In this way

phase coexistence is destroyed by a magnetic field term.

Example: A three state model. To get an intuitive feeling for what

happens at low temperatures in the absence of symmetries, the following

model serves as a standard example (see [13]). We consider spin variables

σi ∈ {−1, 0, 1}, and a Hamiltonian with nearest neighbour interaction

HΛ(σ) =
∑

<x,y>
∫
Λ6=

|σx − σy | (5.88)

Clearly, this model has three translation invariant ground-states, σ ≡ ±1

and σ ≡ 0. Thus, we have three candidates for low-temperature Gibbs

states. We must ask whether all of them will exist at low enough temper-

atures. Let us make a formal computation of the free energies associated

to these states by expanding in perturbations about the constant configura-

tions. We will only keep track of the smallest perturbations, which consist of

having the spin at one site taking a deviant value. The crucial observation is
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that, in the case of the ±1 configurations, there are two such contributions

with excess energy 2d and 4d, respectively, whereas in the 0 configuration

there are two contributions both having energy 2d. Thus, to leading order

|Λ|−1 lnZ±
β,Λ ∼ e−2dβ + e−4dβ (5.89)

whereas

|Λ|−1 lnZ0
β,Λ ∼ 2e−2dβ (5.90)

Thus, in a −1 phase, it may be advantageous to create a large contour

flipping to the 0 configuration, since the ratio of the partition functions inside

will produce a factor exp
(
|int γ|(e−2dβ − e−4dβ)

)
that can compensate the

price in contour energy exp (−β|γ|). In fact, in this model, at zero external

field, there is a unique phase corresponding to a perturbation of the zero-

configuration. It may look paradoxical that this phase is stabilized, because

of a larger number of low energy perturbations, i.e. because it is less rigid

than the other ground-states.

It should be clear that a rigorous analysis of the preceding discussion is

rather complicated. The key observation of the Pirogov-Sinai theory is that

even the equality of all ground-state energy densities eq does not ensure that

there will be Gibbs state that is a perturbation of the corresponding ground-

state. Rather, in the absence of symmetries, to ensure the co-existence all

phases, it will in general be necessary to fine-tune the values of eq in a

temperature-dependent way. In fact, what has to be done is to adjust the

values of the eq (by adding a magnetic field) in such a way that themetastable

free energies corresponding to these phases become equal. The definition of

the concept of metastable free energies is subtle. Roughly, it corresponds to

computing the free energy in a low-temperature expansion around a given

ground-state while suppressing the contributions from large contours (that

might lead to divergences). One can understand that if these metastable free

energies are all equal, one has artificially restored a symmetry between the

phases, in the sense that the ratios of partition functions as in (5.85) are all

almost equal to 1 (and, in particular, not significant against the exponential

preceding it). Therefore, in such a situation, contours are again unlikely,

and the different phases can coexist. A way to make this rigorous is to use

recursive partial summation of contours starting from small and moving up

to larger scales. As this procedure, and even the precise statement of the

results, is quite involved, we will not enter further into the details of this

method. A good exposition can be found in [11], see also [93]. We will have

occasion to revisit low-temperature expansions and iterative methods of a

similar kind in the analysis of the random-field Ising model later on.
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[81] J.G. Sinăı. On the foundations of the ergodic hypothesis for a dynamical
system of statistical mechanics. Soviet Math. Dokl., 4:1818–1822, 1963.
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